Help
RSS
API
Feed
Maltego
Contact
Domain > blog.lumidb.com
×
More information on this domain is in
AlienVault OTX
Is this malicious?
Yes
No
DNS Resolutions
Date
IP Address
2024-11-15
104.26.1.149
(
ClassC
)
2025-11-26
172.67.68.185
(
ClassC
)
Port 443
HTTP/1.1 200 OKDate: Wed, 26 Nov 2025 15:03:16 GMTContent-Type: text/htmlContent-Length: 234716Connection: keep-aliveVary: accept-encodingReport-To: {group:cf-nel,max_age:604800,endpoints:{url:https://a.nel.cloudflare.com/report/v4?sMTR2zPjTsjDpRnwcPxE%2F8lEjTbiE%2BlnLg8oqARzXcZL8Bwy6RVZeZ1jYsmdgSHrIoi%2BicHMHvytiX6T32sphbjrO3sBb4ZAkSbvRRA%3D%3D}}Nel: {report_to:cf-nel,success_fraction:0.0,max_age:604800}Server: cloudflareSet-Cookie: feather__sessione30%3D.38aV%2Bd%2BBke6Qu8ZFP1FoWGlJC1V8ZPA6xOSDnJ3BW0I; HttpOnly; SameSiteLax; Secure; Path/; Max-Age31536000000CF-RAY: 9a4a4585282dfb74-PDX !DOCTYPE html>html dirltr langen classscroll-smooth antialiased selection:bg-primary-500 selection:text-primary-50 data-theme01943f24-836e-43ac-9723-d1eb3ed0d3e6 data-graythemegrayCool data-modelight>head>meta charSetutf-8/>meta nameviewport contentwidthdevice-width,initial-scale1/>link relshortcut icon hrefhttps://imagedelivery.net/gLgcD68SxSCB7eEUDDEJXQ/80c96c1b294735fc2fd66882838b30ac_f8268401-5b40-4f85-8fd1-79b1d0039b17/tiny typeimage/png/>meta nametwitter:card contentsummary_large_image/>meta propertyog:type contentwebsite/>meta propertyog:locale contenten_US/>title>LumiDB blog/title>meta namerobots contentindex,follow/>meta namedescription contentWe publish case studies, product updates, and technical guidance on handling large-scale 3D data. Our goal is to show how organizations use LumiDB to simplify point-cloud workflows, improve performance, and modernize their spatial data infrastructure./>meta propertyog:title contentLumiDB blog/>meta propertyog:description contentWe publish case studies, product updates, and technical guidance on handling large-scale 3D data. Our goal is to show how organizations use LumiDB to simplify point-cloud workflows, improve performance, and modernize their spatial data infrastructure./>meta propertyog:url contenthttps://blog.lumidb.com/>meta propertyog:image contenthttps://imagedelivery.net/gLgcD68SxSCB7eEUDDEJXQ/80c96c1b294735fc2fd66882838b30ac_8232cc0a-1f06-4889-a2b2-a590b67d2983/public/>meta propertyog:image:alt contentLumiDB blog/>link relpreload asimage hrefhttps://imagedelivery.net/gLgcD68SxSCB7eEUDDEJXQ/80c96c1b294735fc2fd66882838b30ac_f8268401-5b40-4f85-8fd1-79b1d0039b17/tiny/>link relpreconnect hrefhttps://fonts.bunny.net/>link relstylesheet hrefhttps://fonts.bunny.net/css?familyroboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i&displayswap/>link relcanonical hrefhttps://blog.lumidb.com/>link relpreconnect hrefhttps://cdn.feather.blog/>link relpreconnect hrefhttps://stats.feather.so/>link relpreload asscript hrefhttps://cdn.usefathom.com/script.js/>link relpreload href/_feather/build/_assets/app-HOSFHHNX.css asstyle/>link relstylesheet href/_feather/build/_assets/app-HOSFHHNX.css/>link relstylesheet href/_feather/build/_assets/nprogress-4XBSUD6B.css/>link relstylesheet href/_feather/build/_assets/notion-XEJMDDB5.css/>style> .notion-collection-page-properties { display: none !important; } :root { --cta-button-radius: 999rem; } /style>style>@font-face { font-family: Polymath Text; src: url(https://lumidb-public.s3.eu-west-1.amazonaws.com/fonts/PolymathText-Light.woff2) format(woff2);}@font-face { font-family: Polymath Display Bold; src: url(https://lumidb-public.s3.eu-west-1.amazonaws.com/fonts/PolymathDisp-Bold.woff2) format(woff2);}:root { --content-font-family: Polymath Text, sans-serif !important; --headings-font-family: Polymath Display Bold, sans-serif !important; --content-font-color: #332C6C; --headings-font-color: #362D8B;}body { font-family: var(--content-font-family) !important; color: var(--content-font-color) !important; font-weight: 400 !important; font-style: normal !important; font-feature-settings: cv12 1, cv18 1, cv24 1, cv10 1 !important; font-kerning: normal !important; font-variation-settings: normal !important; letter-spacing: normal !important; overflow-wrap: break-word !important; text-align: start !important; text-decoration-color: rgb(51, 44, 108) !important; text-decoration-line: none !important; text-decoration-style: solid !important; text-decoration-thickness: auto !important; text-transform: none !important; text-wrap: wrap !important; text-wrap-style: auto !important; white-space-collapse: preserve !important; -webkit-text-stroke-color: rgb(51, 44, 108) !important; -webkit-text-stroke-width: 0px !important;}h1, h2, h3, h4, h5, h6 { font-family: var(--headings-font-family) !important; color: var(--headings-font-color) !important; font-weight: 400 !important; font-style: normal !important; font-feature-settings: cv12 1, cv18 1, cv24 1, cv10 1 !important; font-kerning: normal !important; letter-spacing: 0em !important;}.notion { color: var(--content-font-color) !important;}/style>style> :root { --headings-font-family: Roboto, sans-serif, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; --content-font-family: Roboto, sans-serif, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } /style>style> data-theme01943f24-836e-43ac-9723-d1eb3ed0d3e6 { --primary-50: 245 245 249; --primary-100: 235 234 243; --primary-200: 205 203 226; --primary-300: 175 171 209; --primary-400: 114 108 174; --primary-500: 54 45 139; --primary-600: 49 41 125; --primary-700: 41 34 104; --primary-800: 32 27 83; --primary-900: 26 22 68; } /style>script>/script>!-- Google tag (gtag.js) -->script async srchttps://www.googletagmanager.com/gtag/js?idG-HPQQH1F2C4>/script>script> window.dataLayer window.dataLayer || ; function gtag(){dataLayer.push(arguments);} gtag(js, new Date()); gtag(config, G-HPQQH1F2C4);/script>script>/script>/head>body classoverflow-x-hidden bg-white font-sans text-secondary-900 antialiased>div styleposition:fixed;z-index:9999;top:16px;left:16px;right:16px;bottom:16px;pointer-events:none>/div>section classflex min-h-screen flex-col justify-between feather-all-articles-page>header classnavbar sticky z-20 h-16 bg-white/90 shadow-sm backdrop-blur-lg top-0 py-3>div classmax-w-7xl mx-auto px-4 sm:px-6 lg:px-8>div classflex items-center justify-between>div classshrink-0>a classlogo flex items-center data-umami-eventClicked Link: / data-umami-href/ href/>img alt srchttps://imagedelivery.net/gLgcD68SxSCB7eEUDDEJXQ/80c96c1b294735fc2fd66882838b30ac_9151cfe6-024e-412f-8ee1-d0b03d8406ef/square classh-8 w-auto mr-1/>/a>/div>div classnav-link-wrapper-left hidden lg:flex lg:items-center lg:justify-end lg:gap-4 lg:ml-auto lg:mr-8>a classnav-link nav-link-left nav-link-GENERATED_PAGE nav-link-3fcd12e9-1b30-4b8d-9f02-76ed1ba17043 group inline-flex items-center justify-center gap-1 text-base transition-all duration-200 rounded-cta-button-radius px-3 py-1.5 hover:bg-secondary-100 focus:outline-none focus:ring-2 focus:ring-offset-2 font-medium text-secondary-500 hover:text-secondary-900 focus:ring-secondary-900 data-umami-eventClicked Link: /all data-umami-href/all href/all>All Posts/a>a target_blank relnoopener hrefhttps://lumidb.com/ classnav-link nav-link-left nav-link-EXTERNAL_LINK nav-link-9dc7b331-29c3-4bb6-be64-1f352ca7b046 group inline-flex items-center justify-center gap-1 text-base transition-all duration-200 rounded-cta-button-radius px-3 py-1.5 hover:bg-secondary-100 focus:outline-none focus:ring-2 focus:ring-offset-2 font-medium text-secondary-500 hover:text-secondary-900 focus:ring-secondary-900 data-umami-eventClicked Link: https://lumidb.com/ data-umami-hrefhttps://lumidb.com/>lumidb.comsvg classexternal-link-icon h-5 w-5 ml-2 viewBox0 0 24 24 fillnone strokecurrentColor xmlnshttp://www.w3.org/2000/svg>path dM7 17L17 7M17 7H7M17 7V17 stroke-width2 stroke-linecapround stroke-linejoinround>/path>/svg>/a>/div>div classnav-links-wrapper-right flex items-center justify-end gap-3 lg:gap-4>div classflex items-center justify-end gap-3 lg:gap-2>button typebutton classsite-search-btn inline-flex h-10 w-10 items-center justify-center text-secondary-600 transition-all duration-200 rounded-lg hover:bg-secondary-100 hover:text-secondary-900 focus:outline-none focus:ring-2 focus:ring-secondary-300 focus:ring-offset-2 aria-labelSearch>span classsr-only>Search/span>svg viewBox0 0 24 24 fillnone strokecurrentColor xmlnshttp://www.w3.org/2000/svg classh-5 w-5>path dM21 21L17.364 17.364M17.364 17.364C18.9926 15.7353 20 13.4853 20 11C20 6.02944 15.9706 2 11 2C6.02944 2 2 6.02944 2 11C2 15.9706 6.02944 20 11 20C13.4853 20 15.7353 18.9926 17.364 17.364Z stroke-width1.5 stroke-linecapround>/path>/svg>/button>/div>div classhidden sm:flex sm:items-center sm:gap-4>a target_blank relnoopener hrefhttps://calendly.com/sampo-lumidb/lumidb-intro classnav-link nav-link-right nav-link-CTA nav-link-EXTERNAL_LINK nav-link-db8bd0af-ecfd-41cb-bbed-67c3f8e58fee group inline-flex h-10 items-center justify-center gap-1.5 bg-primary-500 text-base font-semibold text-primary-50 transition-all duration-200 rounded-cta-button-radius border border-transparent px-3 py-1.5 hover:bg-primary-600 focus:outline-none focus:ring-2 focus:ring-primary-500 focus:ring-offset-2 data-umami-eventClicked Link: https://calendly.com/sampo-lumidb/lumidb-intro data-umami-hrefhttps://calendly.com/sampo-lumidb/lumidb-intro>Book a demosvg classexternal-link-icon h-4 w-4 ml-1.5 -mr-0.5 viewBox0 0 24 24 fillnone strokecurrentColor xmlnshttp://www.w3.org/2000/svg>path dM7 17L17 7M17 7H7M17 7V17 stroke-width2 stroke-linecapround stroke-linejoinround>/path>/svg>/a>/div>div classflex lg:hidden>details classmenu-details>summary classinline-flex h-10 w-10 cursor-pointer items-center justify-center text-secondary-600 transition-all duration-200 rounded-cta-button-radius border border-secondary-200 hover:bg-secondary-100 hover:text-secondary-900 focus:outline-none focus:ring-2 focus:ring-secondary-300 focus:ring-offset-2>span classsr-only>Open main menu/span>svg classexpanded-icon h-6 w-6 xmlnshttp://www.w3.org/2000/svg fillnone viewBox0 0 24 24 strokecurrentColor>path stroke-linecapround stroke-linejoinround stroke-width2 dM6 18L18 6M6 6l12 12>/path>/svg>svg classcollapsed-icon h-6 w-6 xmlnshttp://www.w3.org/2000/svg fillnone viewBox0 0 24 24 strokecurrentColor>path stroke-linecapround stroke-linejoinround stroke-width2 dM3 12H21M3 6H21M3 18H21>/path>/svg>/summary>div classabsolute z-10 w-full bg-white shadow-lg left-0 mt-2>div classnav-link-items-mobile px-4 pb-4 sm:px-6>div class-mx-2 space-y-1 pt-4>a classnav-link nav-link-left nav-link-GENERATED_PAGE nav-link-3fcd12e9-1b30-4b8d-9f02-76ed1ba17043 group flex items-center text-base rounded-cta-button-radius px-3 py-1.5 hover:bg-secondary-100 font-medium text-secondary-500 hover:text-secondary-900 focus:ring-secondary-900 data-umami-eventClicked Link: /all data-umami-href/all href/all>All Posts/a>a target_blank relnoopener hrefhttps://lumidb.com/ classnav-link nav-link-left nav-link-EXTERNAL_LINK nav-link-9dc7b331-29c3-4bb6-be64-1f352ca7b046 group flex items-center text-base rounded-cta-button-radius px-3 py-1.5 hover:bg-secondary-100 font-medium text-secondary-500 hover:text-secondary-900 focus:ring-secondary-900 data-umami-eventClicked Link: https://lumidb.com/ data-umami-hrefhttps://lumidb.com/>lumidb.comsvg classexternal-link-icon h-5 w-5 ml-2 viewBox0 0 24 24 fillnone strokecurrentColor xmlnshttp://www.w3.org/2000/svg>path dM7 17L17 7M17 7H7M17 7V17 stroke-width2 stroke-linecapround stroke-linejoinround>/path>/svg>/a>/div>div classnav-links-wrapper-right-mobile -mx-3 space-y-4 px-3 pt-4>a target_blank relnoopener hrefhttps://calendly.com/sampo-lumidb/lumidb-intro classnav-link nav-link-right nav-link-CTA nav-link-EXTERNAL_LINK nav-link-db8bd0af-ecfd-41cb-bbed-67c3f8e58fee group inline-flex h-10 w-full items-center justify-center gap-1.5 bg-primary-500 text-base font-semibold text-primary-50 transition-all duration-200 rounded-cta-button-radius border border-transparent px-3 py-1.5 hover:bg-primary-600 focus:outline-none focus:ring-2 focus:ring-primary-500 focus:ring-offset-2 data-umami-eventClicked Link: https://calendly.com/sampo-lumidb/lumidb-intro data-umami-hrefhttps://calendly.com/sampo-lumidb/lumidb-intro>Book a demosvg classexternal-link-icon h-5 w-5 ml-2 viewBox0 0 24 24 fillnone strokecurrentColor xmlnshttp://www.w3.org/2000/svg>path dM7 17L17 7M17 7H7M17 7V17 stroke-width2 stroke-linecapround stroke-linejoinround>/path>/svg>/a>/div>/div>/div>/details>/div>/div>/div>/div>/header>main classmain-wrapper flex-1>section classhero-wrapper bg-white py-12 sm:py-16 lg:py-20>div classmax-w-7xl mx-auto px-4 sm:px-6 lg:px-8>div classhero-section>h1 classwhitespace-pre-wrap text-4xl font-bold text-secondary-900 sm:text-5xl lg:text-6xl>LumiDB blog/h1>h2 classwhitespace-pre-wrap text-xl font-normal text-secondary-600 mt-4>We publish case studies, product updates, and technical guidance on handling large-scale 3D data. Our goal is to show how organizations use LumiDB to simplify point-cloud workflows, improve performance, and modernize their spatial data infrastructure./h2>/div>/div>/section>section classbg-white pb-12 sm:pb-16 lg:pb-20 xl:pb-24>div classmax-w-7xl mx-auto px-4 sm:px-6 lg:px-8>div classflow-root>div classdivide-secondary-200 -my-12 divide-y lg:-my-16>div classchangelog-article flex flex-col gap-6 py-12 sm:gap-8 lg:flex-row lg:items-start lg:gap-12 lg:py-16 xl:gap-20>div classw-full shrink-0 space-y-4 lg:sticky lg:max-w-sm lg:top-8>p classarticle-publish-date text-base font-medium text-secondary-500>time dateTime2025-11-26>Nov 26, 2025/time>/p>a classblock data-umami-eventClicked Link: /case-study-helsinki data-umami-href/case-study-helsinki href/case-study-helsinki>h3 classarticle-title text-2xl font-bold text-secondary-900 space-x-2.5 sm:text-3xl>span>How Helsinki’s GIS Centre expanded access to 3D city data with LumiDB/span>/h3>/a>div classarticle-author relative flex items-center gap-2>img altSampo Lappalainen srchttps://www.notion.so/image/https:%2F%2Fprod-files-secure.s3.us-west-2.amazonaws.com%2F0524a0b1-eb46-4cd8-8081-a3698d28f579%2Fd026f54c-5f96-45a5-a4f8-b4b95d1d278d%2FVYLE9ePguub4Ia5QtLSBdimIFXw.avif?tableblock&id12911b43-120a-8088-a4dc-f3badf2e8aa0&cachev2 classh-8 w-8 shrink-0 object-cover rounded-full/>a classtext-base font-semibold text-secondary-900 transition-all duration-200 hover:text-primary-500 data-umami-eventClicked Link: /sampo data-umami-href/sampo href/sampo>Sampo Lappalainenspan classabsolute inset-0 aria-hiddentrue>/span>/a>/div>/div>div classflex-1 space-y-5>a classaspect-w-2 aspect-h-1 block overflow-hidden shadow rounded-2xl data-umami-eventClicked Link: /case-study-helsinki data-umami-href/case-study-helsinki href/case-study-helsinki>img altHow Helsinki’s GIS Centre expanded access to 3D city data with LumiDB srchttps://www.notion.so/image/attachment:d1f3d54f-2758-4e36-bce5-7f215e447272:suvi-blog-header.png?tableblock&id2b611b43-120a-803a-9692-cb910f07e83c&cachev2 classh-full w-full object-cover transition-all duration-200 hover:scale-110/>/a>div classflex flex-wrap gap-2>/div>a classblock data-umami-eventClicked Link: /case-study-helsinki data-umami-href/case-study-helsinki href/case-study-helsinki>p classarticle-excerpt text-lg font-normal text-secondary-600 line-clamp-3 lg:line-clamp-none>The City of Helsinki’s GIS Centre partnered with LumiDB to test whether its growing archive of point-cloud data could be made broadly usable through browser-based access. The pilot showed faster loading, simpler workflows, and reduced dependency on specialist desktop tools. This case study outlines the problem, the approach, and what changed for planners and GIS teams./p>/a>p classflex text-sm font-semibold uppercase tracking-widest text-secondary-900 hover:text-primary-500>a classinline-flex items-center data-umami-eventClicked Link: /case-study-helsinki data-umami-href/case-study-helsinki href/case-study-helsinki>Read Moresvg classh-4 w-4 transform transition-all duration-100 ml-2 group-hover:translate-x-1 xmlnshttp://www.w3.org/2000/svg fillnone viewBox0 0 24 24 strokecurrentColor stroke-width2>path stroke-linecapround stroke-linejoinround dM17 8l4 4m0 0l-4 4m4-4H3>/path>/svg>/a>/p>/div>/div>div classchangelog-article flex flex-col gap-6 py-12 sm:gap-8 lg:flex-row lg:items-start lg:gap-12 lg:py-16 xl:gap-20>div classw-full shrink-0 space-y-4 lg:sticky lg:max-w-sm lg:top-8>p classarticle-publish-date text-base font-medium text-secondary-500>time dateTime2025-11-18>Nov 18, 2025/time>/p>a classblock data-umami-eventClicked Link: /case-study-infrakit data-umami-href/case-study-infrakit href/case-study-infrakit>h3 classarticle-title text-2xl font-bold text-secondary-900 space-x-2.5 sm:text-3xl>span>How Infrakit simplified large-scale point-cloud visualization with LumiDB’s query-driven engine/span>/h3>/a>div classarticle-author relative flex items-center gap-2>img altSampo Lappalainen srchttps://www.notion.so/image/https:%2F%2Fprod-files-secure.s3.us-west-2.amazonaws.com%2F0524a0b1-eb46-4cd8-8081-a3698d28f579%2Fd026f54c-5f96-45a5-a4f8-b4b95d1d278d%2FVYLE9ePguub4Ia5QtLSBdimIFXw.avif?tableblock&id12911b43-120a-8088-a4dc-f3badf2e8aa0&cachev2 classh-8 w-8 shrink-0 object-cover rounded-full/>a classtext-base font-semibold text-secondary-900 transition-all duration-200 hover:text-primary-500 data-umami-eventClicked Link: /sampo data-umami-href/sampo href/sampo>Sampo Lappalainenspan classabsolute inset-0 aria-hiddentrue>/span>/a>/div>/div>div classflex-1 space-y-5>a classaspect-w-2 aspect-h-1 block overflow-hidden shadow rounded-2xl data-umami-eventClicked Link: /case-study-infrakit data-umami-href/case-study-infrakit href/case-study-infrakit>img altHow Infrakit simplified large-scale point-cloud visualization with LumiDB’s query-driven engine srchttps://www.notion.so/image/attachment:2b028b8a-1ce5-4e2a-98ec-a288552f39e1:blog-kimtoivonen.png?tableblock&id2ae11b43-120a-8084-81d0-ebcf041cc1c8&cachev2 classh-full w-full object-cover transition-all duration-200 hover:scale-110/>/a>div classflex flex-wrap gap-2>/div>a classblock data-umami-eventClicked Link: /case-study-infrakit data-umami-href/case-study-infrakit href/case-study-infrakit>p classarticle-excerpt text-lg font-normal text-secondary-600 line-clamp-3 lg:line-clamp-none>Infrakit partnered with LumiDB to streamline its point-cloud workflows and replace file-based LOD pipeline. The integration delivered faster rendering, sub-second cross-sections, and a simpler, more stable architecture for handling large LiDAR and drone datasets. This case study outlines how the change was implemented and what improved for engineers and end users./p>/a>p classflex text-sm font-semibold uppercase tracking-widest text-secondary-900 hover:text-primary-500>a classinline-flex items-center data-umami-eventClicked Link: /case-study-infrakit data-umami-href/case-study-infrakit href/case-study-infrakit>Read Moresvg classh-4 w-4 transform transition-all duration-100 ml-2 group-hover:translate-x-1 xmlnshttp://www.w3.org/2000/svg fillnone viewBox0 0 24 24 strokecurrentColor stroke-width2>path stroke-linecapround stroke-linejoinround dM17 8l4 4m0 0l-4 4m4-4H3>/path>/svg>/a>/p>/div>/div>div classchangelog-article flex flex-col gap-6 py-12 sm:gap-8 lg:flex-row lg:items-start lg:gap-12 lg:py-16 xl:gap-20>div classw-full shrink-0 space-y-4 lg:sticky lg:max-w-sm lg:top-8>p classarticle-publish-date text-base font-medium text-secondary-500>time dateTime2025-07-16>Jul 16, 2025/time>/p>a classblock data-umami-eventClicked Link: /swipe-compare-easy-way-to-inspect-differences-between-scans data-umami-href/swipe-compare-easy-way-to-inspect-differences-between-scans href/swipe-compare-easy-way-to-inspect-differences-between-scans>h3 classarticle-title text-2xl font-bold text-secondary-900 space-x-2.5 sm:text-3xl>span>Swipe Compare: Easy way to inspect differences between scans/span>/h3>/a>div classarticle-author relative flex items-center gap-2>img altSampo Lappalainen srchttps://www.notion.so/image/https:%2F%2Fprod-files-secure.s3.us-west-2.amazonaws.com%2F0524a0b1-eb46-4cd8-8081-a3698d28f579%2Fd026f54c-5f96-45a5-a4f8-b4b95d1d278d%2FVYLE9ePguub4Ia5QtLSBdimIFXw.avif?tableblock&id12911b43-120a-8088-a4dc-f3badf2e8aa0&cachev2 classh-8 w-8 shrink-0 object-cover rounded-full/>a classtext-base font-semibold text-secondary-900 transition-all duration-200 hover:text-primary-500 data-umami-eventClicked Link: /sampo data-umami-href/sampo href/sampo>Sampo Lappalainenspan classabsolute inset-0 aria-hiddentrue>/span>/a>/div>/div>div classflex-1 space-y-5>a classaspect-w-2 aspect-h-1 block overflow-hidden shadow rounded-2xl data-umami-eventClicked Link: /swipe-compare-easy-way-to-inspect-differences-between-scans data-umami-href/swipe-compare-easy-way-to-inspect-differences-between-scans href/swipe-compare-easy-way-to-inspect-differences-between-scans>img altSwipe Compare: Easy way to inspect differences between scans srchttps://www.notion.so/image/attachment:556460ef-fd24-473d-8fe8-854e74749ce8:Screenshot_2025-07-16_at_15.12.37.png?tableblock&id23211b43-120a-80f5-bf3c-cf38e3b8d9d5&cachev2 classh-full w-full object-cover transition-all duration-200 hover:scale-110/>/a>div classflex flex-wrap gap-2>/div>a classblock data-umami-eventClicked Link: /swipe-compare-easy-way-to-inspect-differences-between-scans data-umami-href/swipe-compare-easy-way-to-inspect-differences-between-scans href/swipe-compare-easy-way-to-inspect-differences-between-scans>p classarticle-excerpt text-lg font-normal text-secondary-600 line-clamp-3 lg:line-clamp-none>Swipe Compare: visually slide between two scans. See changes in construction, vegetation, or infrastructure with aligned point clouds./p>/a>p classflex text-sm font-semibold uppercase tracking-widest text-secondary-900 hover:text-primary-500>a classinline-flex items-center data-umami-eventClicked Link: /swipe-compare-easy-way-to-inspect-differences-between-scans data-umami-href/swipe-compare-easy-way-to-inspect-differences-between-scans href/swipe-compare-easy-way-to-inspect-differences-between-scans>Read Moresvg classh-4 w-4 transform transition-all duration-100 ml-2 group-hover:translate-x-1 xmlnshttp://www.w3.org/2000/svg fillnone viewBox0 0 24 24 strokecurrentColor stroke-width2>path stroke-linecapround stroke-linejoinround dM17 8l4 4m0 0l-4 4m4-4H3>/path>/svg>/a>/p>/div>/div>div classchangelog-article flex flex-col gap-6 py-12 sm:gap-8 lg:flex-row lg:items-start lg:gap-12 lg:py-16 xl:gap-20>div classw-full shrink-0 space-y-4 lg:sticky lg:max-w-sm lg:top-8>p classarticle-publish-date text-base font-medium text-secondary-500>time dateTime2025-07-15>Jul 15, 2025/time>/p>a classblock data-umami-eventClicked Link: /a-c/c-api-for-data-ingestion data-umami-href/a-c/c-api-for-data-ingestion href/a-c/c-api-for-data-ingestion>h3 classarticle-title text-2xl font-bold text-secondary-900 space-x-2.5 sm:text-3xl>span>A C/C++ API for data ingestion/span>/h3>/a>div classarticle-author relative flex items-center gap-2>img altAlex Lagerstedt srchttps://www.notion.so/image/attachment:6151120e-8afd-4ac2-9541-a3f9e0f57f8f:35SDFsFtLHsl0DwaetyJDzOMAk.png?tableblock&id19611b43-120a-808a-8e30-cece5dfadd90&cachev2 classh-8 w-8 shrink-0 object-cover rounded-full/>a classtext-base font-semibold text-secondary-900 transition-all duration-200 hover:text-primary-500 data-umami-eventClicked Link: /alex data-umami-href/alex href/alex>Alex Lagerstedtspan classabsolute inset-0 aria-hiddentrue>/span>/a>/div>/div>div classflex-1 space-y-5>a classaspect-w-2 aspect-h-1 block overflow-hidden shadow rounded-2xl data-umami-eventClicked Link: /a-c/c-api-for-data-ingestion data-umami-href/a-c/c-api-for-data-ingestion href/a-c/c-api-for-data-ingestion>img altA C/C++ API for data ingestion srchttps://www.notion.so/image/https:%2F%2Fwww.notion.so%2Fimages%2Fpage-cover%2Fnasa_fingerprints_of_water_on_the_sand.jpg?tableblock&id23111b43-120a-8015-9c55-d303281bfb3c&cachev2 classh-full w-full object-cover transition-all duration-200 hover:scale-110/>/a>div classflex flex-wrap gap-2>/div>a classblock data-umami-eventClicked Link: /a-c/c-api-for-data-ingestion data-umami-href/a-c/c-api-for-data-ingestion href/a-c/c-api-for-data-ingestion>p classarticle-excerpt text-lg font-normal text-secondary-600 line-clamp-3 lg:line-clamp-none>We’ve released a C client library for importing data into LumiDB. It wraps our HTTP API with a simple C interface. Ideal for integrating with existing C or C++ systems./p>/a>p classflex text-sm font-semibold uppercase tracking-widest text-secondary-900 hover:text-primary-500>a classinline-flex items-center data-umami-eventClicked Link: /a-c/c-api-for-data-ingestion data-umami-href/a-c/c-api-for-data-ingestion href/a-c/c-api-for-data-ingestion>Read Moresvg classh-4 w-4 transform transition-all duration-100 ml-2 group-hover:translate-x-1 xmlnshttp://www.w3.org/2000/svg fillnone viewBox0 0 24 24 strokecurrentColor stroke-width2>path stroke-linecapround stroke-linejoinround dM17 8l4 4m0 0l-4 4m4-4H3>/path>/svg>/a>/p>/div>/div>div classchangelog-article flex flex-col gap-6 py-12 sm:gap-8 lg:flex-row lg:items-start lg:gap-12 lg:py-16 xl:gap-20>div classw-full shrink-0 space-y-4 lg:sticky lg:max-w-sm lg:top-8>p classarticle-publish-date text-base font-medium text-secondary-500>time dateTime2025-06-27>Jun 27, 2025/time>/p>a classblock data-umami-eventClicked Link: /progressive-lod-streaming-viewer data-umami-href/progressive-lod-streaming-viewer href/progressive-lod-streaming-viewer>h3 classarticle-title text-2xl font-bold text-secondary-900 space-x-2.5 sm:text-3xl>span>New in LumiDB: Progressive LOD Streaming Viewer/span>/h3>/a>div classarticle-author relative flex items-center gap-2>img altJasin Bushnaief srchttps://www.notion.so/image/https:%2F%2Fprod-files-secure.s3.us-west-2.amazonaws.com%2F0524a0b1-eb46-4cd8-8081-a3698d28f579%2F72c5ae9d-33d7-40e7-ae91-451a0f9095dc%2FvhHrb4Ui0L1aO5U9K6uortkPA.avif?tableblock&id12911b43-120a-80f6-b20a-c56133b859a6&cachev2 classh-8 w-8 shrink-0 object-cover rounded-full/>a classtext-base font-semibold text-secondary-900 transition-all duration-200 hover:text-primary-500 data-umami-eventClicked Link: /jasin data-umami-href/jasin href/jasin>Jasin Bushnaiefspan classabsolute inset-0 aria-hiddentrue>/span>/a>/div>/div>div classflex-1 space-y-5>a classaspect-w-2 aspect-h-1 block overflow-hidden shadow rounded-2xl data-umami-eventClicked Link: /progressive-lod-streaming-viewer data-umami-href/progressive-lod-streaming-viewer href/progressive-lod-streaming-viewer>img altNew in LumiDB: Progressive LOD Streaming Viewer srchttps://www.notion.so/image/attachment:29b9cb35-d43c-48fe-8156-4acc7edd80b1:streaming_viewer_cover.png?tableblock&id21f11b43-120a-8089-8d35-d1a15a3f3126&cachev2 classh-full w-full object-cover transition-all duration-200 hover:scale-110/>/a>div classflex flex-wrap gap-2>/div>a classblock data-umami-eventClicked Link: /progressive-lod-streaming-viewer data-umami-href/progressive-lod-streaming-viewer href/progressive-lod-streaming-viewer>p classarticle-excerpt text-lg font-normal text-secondary-600 line-clamp-3 lg:line-clamp-none>We’ve brought progressive 3D Tiles streaming to the LumiDB Viewer, letting users instantly see full 3D datasets and get live query results without waiting. This major upgrade is part of a broader summer rollout focused on delivering a smooth, high-performance experience for exploring and analyzing massive point cloud datasets./p>/a>p classflex text-sm font-semibold uppercase tracking-widest text-secondary-900 hover:text-primary-500>a classinline-flex items-center data-umami-eventClicked Link: /progressive-lod-streaming-viewer data-umami-href/progressive-lod-streaming-viewer href/progressive-lod-streaming-viewer>Read Moresvg classh-4 w-4 transform transition-all duration-100 ml-2 group-hover:translate-x-1 xmlnshttp://www.w3.org/2000/svg fillnone viewBox0 0 24 24 strokecurrentColor stroke-width2>path stroke-linecapround stroke-linejoinround dM17 8l4 4m0 0l-4 4m4-4H3>/path>/svg>/a>/p>/div>/div>div classchangelog-article flex flex-col gap-6 py-12 sm:gap-8 lg:flex-row lg:items-start lg:gap-12 lg:py-16 xl:gap-20>div classw-full shrink-0 space-y-4 lg:sticky lg:max-w-sm lg:top-8>p classarticle-publish-date text-base font-medium text-secondary-500>time dateTime2025-06-11>Jun 11, 2025/time>/p>a classblock data-umami-eventClicked Link: /managing-infrastructure-scale-point-cloud-data-with-lumidb data-umami-href/managing-infrastructure-scale-point-cloud-data-with-lumidb href/managing-infrastructure-scale-point-cloud-data-with-lumidb>h3 classarticle-title text-2xl font-bold text-secondary-900 space-x-2.5 sm:text-3xl>span>Managing infrastructure-scale point cloud data with LumiDB/span>/h3>/a>div classarticle-author relative flex items-center gap-2>img altSampo Lappalainen srchttps://www.notion.so/image/https:%2F%2Fprod-files-secure.s3.us-west-2.amazonaws.com%2F0524a0b1-eb46-4cd8-8081-a3698d28f579%2Fd026f54c-5f96-45a5-a4f8-b4b95d1d278d%2FVYLE9ePguub4Ia5QtLSBdimIFXw.avif?tableblock&id12911b43-120a-8088-a4dc-f3badf2e8aa0&cachev2 classh-8 w-8 shrink-0 object-cover rounded-full/>a classtext-base font-semibold text-secondary-900 transition-all duration-200 hover:text-primary-500 data-umami-eventClicked Link: /sampo data-umami-href/sampo href/sampo>Sampo Lappalainenspan classabsolute inset-0 aria-hiddentrue>/span>/a>/div>/div>div classflex-1 space-y-5>a classaspect-w-2 aspect-h-1 block overflow-hidden shadow rounded-2xl data-umami-eventClicked Link: /managing-infrastructure-scale-point-cloud-data-with-lumidb data-umami-href/managing-infrastructure-scale-point-cloud-data-with-lumidb href/managing-infrastructure-scale-point-cloud-data-with-lumidb>img altManaging infrastructure-scale point cloud data with LumiDB srchttps://www.notion.so/image/attachment:6d012c45-888e-4629-a31c-e5d68cf693fc:Screenshot_2025-06-11_at_14.48.11.png?tableblock&id20f11b43-120a-80b9-9a2e-d6b089264395&cachev2 classh-full w-full object-cover transition-all duration-200 hover:scale-110/>/a>div classflex flex-wrap gap-2>/div>a classblock data-umami-eventClicked Link: /managing-infrastructure-scale-point-cloud-data-with-lumidb data-umami-href/managing-infrastructure-scale-point-cloud-data-with-lumidb href/managing-infrastructure-scale-point-cloud-data-with-lumidb>p classarticle-excerpt text-lg font-normal text-secondary-600 line-clamp-3 lg:line-clamp-none>National infrastructure operators are generating massive volumes of 3D scan data from drones, mobile scanners, and contractors. This post outlines how LumiDB helps integrate point clouds into GIS, CAD, and BIM workflows as part of a unified digital twin strategy./p>/a>p classflex text-sm font-semibold uppercase tracking-widest text-secondary-900 hover:text-primary-500>a classinline-flex items-center data-umami-eventClicked Link: /managing-infrastructure-scale-point-cloud-data-with-lumidb data-umami-href/managing-infrastructure-scale-point-cloud-data-with-lumidb href/managing-infrastructure-scale-point-cloud-data-with-lumidb>Read Moresvg classh-4 w-4 transform transition-all duration-100 ml-2 group-hover:translate-x-1 xmlnshttp://www.w3.org/2000/svg fillnone viewBox0 0 24 24 strokecurrentColor stroke-width2>path stroke-linecapround stroke-linejoinround dM17 8l4 4m0 0l-4 4m4-4H3>/path>/svg>/a>/p>/div>/div>div classchangelog-article flex flex-col gap-6 py-12 sm:gap-8 lg:flex-row lg:items-start lg:gap-12 lg:py-16 xl:gap-20>div classw-full shrink-0 space-y-4 lg:sticky lg:max-w-sm lg:top-8>p classarticle-publish-date text-base font-medium text-secondary-500>time dateTime2025-06-09>Jun 9, 2025/time>/p>a classblock data-umami-eventClicked Link: /3d-tiles-support-in-lumidb data-umami-href/3d-tiles-support-in-lumidb href/3d-tiles-support-in-lumidb>h3 classarticle-title text-2xl font-bold text-secondary-900 space-x-2.5 sm:text-3xl>span>3D Tiles Support in LumiDB: Adaptive Streaming for Any Application/span>/h3>/a>div classarticle-author relative flex items-center gap-2>img altJasin Bushnaief srchttps://www.notion.so/image/https:%2F%2Fprod-files-secure.s3.us-west-2.amazonaws.com%2F0524a0b1-eb46-4cd8-8081-a3698d28f579%2F72c5ae9d-33d7-40e7-ae91-451a0f9095dc%2FvhHrb4Ui0L1aO5U9K6uortkPA.avif?tableblock&id12911b43-120a-80f6-b20a-c56133b859a6&cachev2 classh-8 w-8 shrink-0 object-cover rounded-full/>a classtext-base font-semibold text-secondary-900 transition-all duration-200 hover:text-primary-500 data-umami-eventClicked Link: /jasin data-umami-href/jasin href/jasin>Jasin Bushnaiefspan classabsolute inset-0 aria-hiddentrue>/span>/a>/div>/div>div classflex-1 space-y-5>a classaspect-w-2 aspect-h-1 block overflow-hidden shadow rounded-2xl data-umami-eventClicked Link: /3d-tiles-support-in-lumidb data-umami-href/3d-tiles-support-in-lumidb href/3d-tiles-support-in-lumidb>img alt3D Tiles Support in LumiDB: Adaptive Streaming for Any Application srchttps://www.notion.so/image/attachment:08ca399b-0697-479d-af7c-0e1d90291153:streaming_cover.png?tableblock&id20d11b43-120a-8095-a005-f10da002882f&cachev2 classh-full w-full object-cover transition-all duration-200 hover:scale-110/>/a>div classflex flex-wrap gap-2>/div>a classblock data-umami-eventClicked Link: /3d-tiles-support-in-lumidb data-umami-href/3d-tiles-support-in-lumidb href/3d-tiles-support-in-lumidb>p classarticle-excerpt text-lg font-normal text-secondary-600 line-clamp-3 lg:line-clamp-none>LumiDB now supports adaptive level-of-detail streaming via 3D Tiles. This means easy integration into any Cesium.js-based tool, or any tool requiring adaptive streaming of reality capture datasets, even massive ones. We’re also bringing LOD streaming into our own viewer app./p>/a>p classflex text-sm font-semibold uppercase tracking-widest text-secondary-900 hover:text-primary-500>a classinline-flex items-center data-umami-eventClicked Link: /3d-tiles-support-in-lumidb data-umami-href/3d-tiles-support-in-lumidb href/3d-tiles-support-in-lumidb>Read Moresvg classh-4 w-4 transform transition-all duration-100 ml-2 group-hover:translate-x-1 xmlnshttp://www.w3.org/2000/svg fillnone viewBox0 0 24 24 strokecurrentColor stroke-width2>path stroke-linecapround stroke-linejoinround dM17 8l4 4m0 0l-4 4m4-4H3>/path>/svg>/a>/p>/div>/div>div classchangelog-article flex flex-col gap-6 py-12 sm:gap-8 lg:flex-row lg:items-start lg:gap-12 lg:py-16 xl:gap-20>div classw-full shrink-0 space-y-4 lg:sticky lg:max-w-sm lg:top-8>p classarticle-publish-date text-base font-medium text-secondary-500>time dateTime2025-04-10>Apr 10, 2025/time>/p>a classblock data-umami-eventClicked Link: /lumidb-import-api-tutorial data-umami-href/lumidb-import-api-tutorial href/lumidb-import-api-tutorial>h3 classarticle-title text-2xl font-bold text-secondary-900 space-x-2.5 sm:text-3xl>span>Step-by-Step: Importing Files into LumiDB Using the API/span>/h3>/a>div classarticle-author relative flex items-center gap-2>img altJasin Bushnaief srchttps://www.notion.so/image/https:%2F%2Fprod-files-secure.s3.us-west-2.amazonaws.com%2F0524a0b1-eb46-4cd8-8081-a3698d28f579%2F72c5ae9d-33d7-40e7-ae91-451a0f9095dc%2FvhHrb4Ui0L1aO5U9K6uortkPA.avif?tableblock&id12911b43-120a-80f6-b20a-c56133b859a6&cachev2 classh-8 w-8 shrink-0 object-cover rounded-full/>a classtext-base font-semibold text-secondary-900 transition-all duration-200 hover:text-primary-500 data-umami-eventClicked Link: /jasin data-umami-href/jasin href/jasin>Jasin Bushnaiefspan classabsolute inset-0 aria-hiddentrue>/span>/a>/div>/div>div classflex-1 space-y-5>a classaspect-w-2 aspect-h-1 block overflow-hidden shadow rounded-2xl data-umami-eventClicked Link: /lumidb-import-api-tutorial data-umami-href/lumidb-import-api-tutorial href/lumidb-import-api-tutorial>img altStep-by-Step: Importing Files into LumiDB Using the API srchttps://www.notion.so/image/attachment:4ebffcda-b5b3-451b-a38e-ee87fb02918e:ChatGPT_Image_Apr_10_2025_11_14_23_AM.png?tableblock&id1d111b43-120a-8055-946c-e52334f29366&cachev2 classh-full w-full object-cover transition-all duration-200 hover:scale-110/>/a>div classflex flex-wrap gap-2>/div>a classblock data-umami-eventClicked Link: /lumidb-import-api-tutorial data-umami-href/lumidb-import-api-tutorial href/lumidb-import-api-tutorial>p classarticle-excerpt text-lg font-normal text-secondary-600 line-clamp-3 lg:line-clamp-none>This post shows you how to import reality capture files into a LumiDB table, by walking through our simple import API./p>/a>p classflex text-sm font-semibold uppercase tracking-widest text-secondary-900 hover:text-primary-500>a classinline-flex items-center data-umami-eventClicked Link: /lumidb-import-api-tutorial data-umami-href/lumidb-import-api-tutorial href/lumidb-import-api-tutorial>Read Moresvg classh-4 w-4 transform transition-all duration-100 ml-2 group-hover:translate-x-1 xmlnshttp://www.w3.org/2000/svg fillnone viewBox0 0 24 24 strokecurrentColor stroke-width2>path stroke-linecapround stroke-linejoinround dM17 8l4 4m0 0l-4 4m4-4H3>/path>/svg>/a>/p>/div>/div>div classchangelog-article flex flex-col gap-6 py-12 sm:gap-8 lg:flex-row lg:items-start lg:gap-12 lg:py-16 xl:gap-20>div classw-full shrink-0 space-y-4 lg:sticky lg:max-w-sm lg:top-8>p classarticle-publish-date text-base font-medium text-secondary-500>time dateTime2025-03-10>Mar 10, 2025/time>/p>a classblock data-umami-eventClicked Link: /drowning-in-reality-capture-data-why-traditional-storage-is-failing-you data-umami-href/drowning-in-reality-capture-data-why-traditional-storage-is-failing-you href/drowning-in-reality-capture-data-why-traditional-storage-is-failing-you>h3 classarticle-title text-2xl font-bold text-secondary-900 space-x-2.5 sm:text-3xl>span>Drowning in Reality Capture Data? Why Traditional Storage is Failing You/span>/h3>/a>div classarticle-author relative flex items-center gap-2>img altSampo Lappalainen srchttps://www.notion.so/image/https:%2F%2Fprod-files-secure.s3.us-west-2.amazonaws.com%2F0524a0b1-eb46-4cd8-8081-a3698d28f579%2Fd026f54c-5f96-45a5-a4f8-b4b95d1d278d%2FVYLE9ePguub4Ia5QtLSBdimIFXw.avif?tableblock&id12911b43-120a-8088-a4dc-f3badf2e8aa0&cachev2 classh-8 w-8 shrink-0 object-cover rounded-full/>a classtext-base font-semibold text-secondary-900 transition-all duration-200 hover:text-primary-500 data-umami-eventClicked Link: /sampo data-umami-href/sampo href/sampo>Sampo Lappalainenspan classabsolute inset-0 aria-hiddentrue>/span>/a>/div>/div>div classflex-1 space-y-5>a classaspect-w-2 aspect-h-1 block overflow-hidden shadow rounded-2xl data-umami-eventClicked Link: /drowning-in-reality-capture-data-why-traditional-storage-is-failing-you data-umami-href/drowning-in-reality-capture-data-why-traditional-storage-is-failing-you href/drowning-in-reality-capture-data-why-traditional-storage-is-failing-you>img altDrowning in Reality Capture Data? Why Traditional Storage is Failing You srchttps://www.notion.so/image/attachment:7abfaa67-5cd7-464f-a31d-77f4c700c8a3:u3525751529_A_business_professional_overwhelmed_by_a_flood_of_e41b0308-81fe-40ce-9746-67c675bc353e_3.png?tableblock&id1af11b43-120a-8069-b74a-e7ab974b3d89&cachev2 classh-full w-full object-cover transition-all duration-200 hover:scale-110/>/a>div classflex flex-wrap gap-2>/div>a classblock data-umami-eventClicked Link: /drowning-in-reality-capture-data-why-traditional-storage-is-failing-you data-umami-href/drowning-in-reality-capture-data-why-traditional-storage-is-failing-you href/drowning-in-reality-capture-data-why-traditional-storage-is-failing-you>p classarticle-excerpt text-lg font-normal text-secondary-600 line-clamp-3 lg:line-clamp-none>Reality capture data is a powerful asset, until it turns into a liability. Scans pile up across cloud drives and servers, buried in endless folders with no clear way to retrieve, compare, or integrate them. Teams waste hours chasing down the right version, manually stitching together datasets, and fighting with outdated storage systems. It’s an expensive mess. But what if data didn’t have to be scattered and frustrating? What if it were instantly accessible, easy to explore, and seamlessly connected to your workflows?/p>/a>p classflex text-sm font-semibold uppercase tracking-widest text-secondary-900 hover:text-primary-500>a classinline-flex items-center data-umami-eventClicked Link: /drowning-in-reality-capture-data-why-traditional-storage-is-failing-you data-umami-href/drowning-in-reality-capture-data-why-traditional-storage-is-failing-you href/drowning-in-reality-capture-data-why-traditional-storage-is-failing-you>Read Moresvg classh-4 w-4 transform transition-all duration-100 ml-2 group-hover:translate-x-1 xmlnshttp://www.w3.org/2000/svg fillnone viewBox0 0 24 24 strokecurrentColor stroke-width2>path stroke-linecapround stroke-linejoinround dM17 8l4 4m0 0l-4 4m4-4H3>/path>/svg>/a>/p>/div>/div>div classchangelog-article flex flex-col gap-6 py-12 sm:gap-8 lg:flex-row lg:items-start lg:gap-12 lg:py-16 xl:gap-20>div classw-full shrink-0 space-y-4 lg:sticky lg:max-w-sm lg:top-8>p classarticle-publish-date text-base font-medium text-secondary-500>time dateTime2025-02-10>Feb 10, 2025/time>/p>a classblock data-umami-eventClicked Link: /importing-a-quarter-trillion-points data-umami-href/importing-a-quarter-trillion-points href/importing-a-quarter-trillion-points>h3 classarticle-title text-2xl font-bold text-secondary-900 space-x-2.5 sm:text-3xl>span>Importing a Quarter Trillion Points/span>/h3>/a>div classarticle-author relative flex items-center gap-2>img altAlex Lagerstedt srchttps://www.notion.so/image/attachment:6151120e-8afd-4ac2-9541-a3f9e0f57f8f:35SDFsFtLHsl0DwaetyJDzOMAk.png?tableblock&id19611b43-120a-808a-8e30-cece5dfadd90&cachev2 classh-8 w-8 shrink-0 object-cover rounded-full/>a classtext-base font-semibold text-secondary-900 transition-all duration-200 hover:text-primary-500 data-umami-eventClicked Link: /alex data-umami-href/alex href/alex>Alex Lagerstedtspan classabsolute inset-0 aria-hiddentrue>/span>/a>/div>/div>div classflex-1 space-y-5>a classaspect-w-2 aspect-h-1 block overflow-hidden shadow rounded-2xl data-umami-eventClicked Link: /importing-a-quarter-trillion-points data-umami-href/importing-a-quarter-trillion-points href/importing-a-quarter-trillion-points>img altImporting a Quarter Trillion Points srchttps://www.notion.so/image/attachment:38c25c6b-ae8f-4c9e-8c6d-02b9aca3db5e:SCR-20250210-pmok.jpeg?tableblock&id19611b43-120a-8027-aa48-daf4f8b36e4c&cachev2 classh-full w-full object-cover transition-all duration-200 hover:scale-110/>/a>div classflex flex-wrap gap-2>/div>a classblock data-umami-eventClicked Link: /importing-a-quarter-trillion-points data-umami-href/importing-a-quarter-trillion-points href/importing-a-quarter-trillion-points>p classarticle-excerpt text-lg font-normal text-secondary-600 line-clamp-3 lg:line-clamp-none>Managing and using a terabyte-scale point cloud dataset becomes painful when working with traditional file-based tools and methods. LumiDB might be able to help you here! In this case study we investigate how such a dataset is imported into LumiDB./p>/a>p classflex text-sm font-semibold uppercase tracking-widest text-secondary-900 hover:text-primary-500>a classinline-flex items-center data-umami-eventClicked Link: /importing-a-quarter-trillion-points data-umami-href/importing-a-quarter-trillion-points href/importing-a-quarter-trillion-points>Read Moresvg classh-4 w-4 transform transition-all duration-100 ml-2 group-hover:translate-x-1 xmlnshttp://www.w3.org/2000/svg fillnone viewBox0 0 24 24 strokecurrentColor stroke-width2>path stroke-linecapround stroke-linejoinround dM17 8l4 4m0 0l-4 4m4-4H3>/path>/svg>/a>/p>/div>/div>div classchangelog-article flex flex-col gap-6 py-12 sm:gap-8 lg:flex-row lg:items-start lg:gap-12 lg:py-16 xl:gap-20>div classw-full shrink-0 space-y-4 lg:sticky lg:max-w-sm lg:top-8>p classarticle-publish-date text-base font-medium text-secondary-500>time dateTime2025-02-03>Feb 3, 2025/time>/p>a classblock data-umami-eventClicked Link: /leveraging-metadata-in-lumidb-queries-a-multi-scanner-example data-umami-href/leveraging-metadata-in-lumidb-queries-a-multi-scanner-example href/leveraging-metadata-in-lumidb-queries-a-multi-scanner-example>h3 classarticle-title text-2xl font-bold text-secondary-900 space-x-2.5 sm:text-3xl>span>Leveraging Metadata in LumiDB Queries: A Multi-Scanner Example/span>/h3>/a>div classarticle-author relative flex items-center gap-2>img altJasin Bushnaief srchttps://www.notion.so/image/https:%2F%2Fprod-files-secure.s3.us-west-2.amazonaws.com%2F0524a0b1-eb46-4cd8-8081-a3698d28f579%2F72c5ae9d-33d7-40e7-ae91-451a0f9095dc%2FvhHrb4Ui0L1aO5U9K6uortkPA.avif?tableblock&id12911b43-120a-80f6-b20a-c56133b859a6&cachev2 classh-8 w-8 shrink-0 object-cover rounded-full/>a classtext-base font-semibold text-secondary-900 transition-all duration-200 hover:text-primary-500 data-umami-eventClicked Link: /jasin data-umami-href/jasin href/jasin>Jasin Bushnaiefspan classabsolute inset-0 aria-hiddentrue>/span>/a>/div>/div>div classflex-1 space-y-5>a classaspect-w-2 aspect-h-1 block overflow-hidden shadow rounded-2xl data-umami-eventClicked Link: /leveraging-metadata-in-lumidb-queries-a-multi-scanner-example data-umami-href/leveraging-metadata-in-lumidb-queries-a-multi-scanner-example href/leveraging-metadata-in-lumidb-queries-a-multi-scanner-example>img altLeveraging Metadata in LumiDB Queries: A Multi-Scanner Example srchttps://www.notion.so/image/attachment:11349415-db4c-469c-aee3-93d2e86fc10a:blog_header_image.png?tableblock&id18f11b43-120a-8026-825e-e11f1adafbb3&cachev2 classh-full w-full object-cover transition-all duration-200 hover:scale-110/>/a>div classflex flex-wrap gap-2>/div>a classblock data-umami-eventClicked Link: /leveraging-metadata-in-lumidb-queries-a-multi-scanner-example data-umami-href/leveraging-metadata-in-lumidb-queries-a-multi-scanner-example href/leveraging-metadata-in-lumidb-queries-a-multi-scanner-example>p classarticle-excerpt text-lg font-normal text-secondary-600 line-clamp-3 lg:line-clamp-none>Managing large 3D scan datasets efficiently is challenging—especially when dealing with strict memory constraints. In this post, we explore how metadata queries in LumiDB let you interactively enable and disable scans without ever loading the full dataset into memory. We’ll walk through a real-world example, where a building scan is split into multiple scanner positions, and show how LumiDB’s built-in filtering and level-of-detail (LOD) handling can keep your application fast and responsive. 🚀/p>/a>p classflex text-sm font-semibold uppercase tracking-widest text-secondary-900 hover:text-primary-500>a classinline-flex items-center data-umami-eventClicked Link: /leveraging-metadata-in-lumidb-queries-a-multi-scanner-example data-umami-href/leveraging-metadata-in-lumidb-queries-a-multi-scanner-example href/leveraging-metadata-in-lumidb-queries-a-multi-scanner-example>Read Moresvg classh-4 w-4 transform transition-all duration-100 ml-2 group-hover:translate-x-1 xmlnshttp://www.w3.org/2000/svg fillnone viewBox0 0 24 24 strokecurrentColor stroke-width2>path stroke-linecapround stroke-linejoinround dM17 8l4 4m0 0l-4 4m4-4H3>/path>/svg>/a>/p>/div>/div>div classchangelog-article flex flex-col gap-6 py-12 sm:gap-8 lg:flex-row lg:items-start lg:gap-12 lg:py-16 xl:gap-20>div classw-full shrink-0 space-y-4 lg:sticky lg:max-w-sm lg:top-8>p classarticle-publish-date text-base font-medium text-secondary-500>time dateTime2025-01-22>Jan 22, 2025/time>/p>a classblock data-umami-eventClicked Link: /visualizing-massive-3d-point-clouds-with-dynamic-level-of-detail data-umami-href/visualizing-massive-3d-point-clouds-with-dynamic-level-of-detail href/visualizing-massive-3d-point-clouds-with-dynamic-level-of-detail>h3 classarticle-title text-2xl font-bold text-secondary-900 space-x-2.5 sm:text-3xl>span>Visualizing Massive 3D Point Clouds with Dynamic Level-of-Detail/span>/h3>/a>div classarticle-author relative flex items-center gap-2>img altSampo Lappalainen srchttps://www.notion.so/image/https:%2F%2Fprod-files-secure.s3.us-west-2.amazonaws.com%2F0524a0b1-eb46-4cd8-8081-a3698d28f579%2Fd026f54c-5f96-45a5-a4f8-b4b95d1d278d%2FVYLE9ePguub4Ia5QtLSBdimIFXw.avif?tableblock&id12911b43-120a-8088-a4dc-f3badf2e8aa0&cachev2 classh-8 w-8 shrink-0 object-cover rounded-full/>a classtext-base font-semibold text-secondary-900 transition-all duration-200 hover:text-primary-500 data-umami-eventClicked Link: /sampo data-umami-href/sampo href/sampo>Sampo Lappalainenspan classabsolute inset-0 aria-hiddentrue>/span>/a>/div>/div>div classflex-1 space-y-5>a classaspect-w-2 aspect-h-1 block overflow-hidden shadow rounded-2xl data-umami-eventClicked Link: /visualizing-massive-3d-point-clouds-with-dynamic-level-of-detail data-umami-href/visualizing-massive-3d-point-clouds-with-dynamic-level-of-detail href/visualizing-massive-3d-point-clouds-with-dynamic-level-of-detail>img altVisualizing Massive 3D Point Clouds with Dynamic Level-of-Detail srchttps://www.notion.so/image/https:%2F%2Fprod-files-secure.s3.us-west-2.amazonaws.com%2F0524a0b1-eb46-4cd8-8081-a3698d28f579%2Ffe1f5900-958c-4772-93c0-c190dd784aed%2FScreenshot_2025-01-21_at_16.38.58.png?tableblock&id15911b43-120a-8032-b99b-ce056625063a&cachev2 classh-full w-full object-cover transition-all duration-200 hover:scale-110/>/a>div classflex flex-wrap gap-2>/div>a classblock data-umami-eventClicked Link: /visualizing-massive-3d-point-clouds-with-dynamic-level-of-detail data-umami-href/visualizing-massive-3d-point-clouds-with-dynamic-level-of-detail href/visualizing-massive-3d-point-clouds-with-dynamic-level-of-detail>p classarticle-excerpt text-lg font-normal text-secondary-600 line-clamp-3 lg:line-clamp-none>Visualizing large 3D point cloud datasets can be a daunting task. With LumiDB, users store their data in a special purpose database that enables efficient querying based on point budget or density, eliminating the need for preprocessing. Beyond visualization, the stored points remain fully usable for other workflows. This post explores the challenges of visualizing massive point cloud datasets and how LumiDB helps./p>/a>p classflex text-sm font-semibold uppercase tracking-widest text-secondary-900 hover:text-primary-500>a classinline-flex items-center data-umami-eventClicked Link: /visualizing-massive-3d-point-clouds-with-dynamic-level-of-detail data-umami-href/visualizing-massive-3d-point-clouds-with-dynamic-level-of-detail href/visualizing-massive-3d-point-clouds-with-dynamic-level-of-detail>Read Moresvg classh-4 w-4 transform transition-all duration-100 ml-2 group-hover:translate-x-1 xmlnshttp://www.w3.org/2000/svg fillnone viewBox0 0 24 24 strokecurrentColor stroke-width2>path stroke-linecapround stroke-linejoinround dM17 8l4 4m0 0l-4 4m4-4H3>/path>/svg>/a>/p>/div>/div>div classchangelog-article flex flex-col gap-6 py-12 sm:gap-8 lg:flex-row lg:items-start lg:gap-12 lg:py-16 xl:gap-20>div classw-full shrink-0 space-y-4 lg:sticky lg:max-w-sm lg:top-8>p classarticle-publish-date text-base font-medium text-secondary-500>time dateTime2024-12-11>Dec 11, 2024/time>/p>a classblock data-umami-eventClicked Link: /lumidb-the-simplest-possible-api-to-query-reality-capture-data data-umami-href/lumidb-the-simplest-possible-api-to-query-reality-capture-data href/lumidb-the-simplest-possible-api-to-query-reality-capture-data>h3 classarticle-title text-2xl font-bold text-secondary-900 space-x-2.5 sm:text-3xl>span>LumiDB: The Simplest Possible API for Reality Capture Data/span>/h3>/a>div classarticle-author relative flex items-center gap-2>img altJasin Bushnaief srchttps://www.notion.so/image/https:%2F%2Fprod-files-secure.s3.us-west-2.amazonaws.com%2F0524a0b1-eb46-4cd8-8081-a3698d28f579%2F72c5ae9d-33d7-40e7-ae91-451a0f9095dc%2FvhHrb4Ui0L1aO5U9K6uortkPA.avif?tableblock&id12911b43-120a-80f6-b20a-c56133b859a6&cachev2 classh-8 w-8 shrink-0 object-cover rounded-full/>a classtext-base font-semibold text-secondary-900 transition-all duration-200 hover:text-primary-500 data-umami-eventClicked Link: /jasin data-umami-href/jasin href/jasin>Jasin Bushnaiefspan classabsolute inset-0 aria-hiddentrue>/span>/a>/div>/div>div classflex-1 space-y-5>a classaspect-w-2 aspect-h-1 block overflow-hidden shadow rounded-2xl data-umami-eventClicked Link: /lumidb-the-simplest-possible-api-to-query-reality-capture-data data-umami-href/lumidb-the-simplest-possible-api-to-query-reality-capture-data href/lumidb-the-simplest-possible-api-to-query-reality-capture-data>img altLumiDB: The Simplest Possible API for Reality Capture Data srchttps://www.notion.so/image/https:%2F%2Fprod-files-secure.s3.us-west-2.amazonaws.com%2F0524a0b1-eb46-4cd8-8081-a3698d28f579%2Fe6bf67c3-b662-40ec-8092-1188414f7211%2Fjavascript_api.png?tableblock&id15911b43-120a-801a-89ed-e4af82757a35&cachev2 classh-full w-full object-cover transition-all duration-200 hover:scale-110/>/a>div classflex flex-wrap gap-2>/div>a classblock data-umami-eventClicked Link: /lumidb-the-simplest-possible-api-to-query-reality-capture-data data-umami-href/lumidb-the-simplest-possible-api-to-query-reality-capture-data href/lumidb-the-simplest-possible-api-to-query-reality-capture-data>p classarticle-excerpt text-lg font-normal text-secondary-600 line-clamp-3 lg:line-clamp-none>We’re releasing our minimal-yet-powerful runtime API. Whether you’re visualizing in Three.js or exporting data to 3rd party tools, LumiDB is built to make managing reality capture data easy and efficient./p>/a>p classflex text-sm font-semibold uppercase tracking-widest text-secondary-900 hover:text-primary-500>a classinline-flex items-center data-umami-eventClicked Link: /lumidb-the-simplest-possible-api-to-query-reality-capture-data data-umami-href/lumidb-the-simplest-possible-api-to-query-reality-capture-data href/lumidb-the-simplest-possible-api-to-query-reality-capture-data>Read Moresvg classh-4 w-4 transform transition-all duration-100 ml-2 group-hover:translate-x-1 xmlnshttp://www.w3.org/2000/svg fillnone viewBox0 0 24 24 strokecurrentColor stroke-width2>path stroke-linecapround stroke-linejoinround dM17 8l4 4m0 0l-4 4m4-4H3>/path>/svg>/a>/p>/div>/div>div classchangelog-article flex flex-col gap-6 py-12 sm:gap-8 lg:flex-row lg:items-start lg:gap-12 lg:py-16 xl:gap-20>div classw-full shrink-0 space-y-4 lg:sticky lg:max-w-sm lg:top-8>p classarticle-publish-date text-base font-medium text-secondary-500>time dateTime2024-11-26>Nov 26, 2024/time>/p>a classblock data-umami-eventClicked Link: /file-chaos-why-the-construction-industry-needs-a-new-approach-to-managing-reality-capture-data data-umami-href/file-chaos-why-the-construction-industry-needs-a-new-approach-to-managing-reality-capture-data href/file-chaos-why-the-construction-industry-needs-a-new-approach-to-managing-reality-capture-data>h3 classarticle-title text-2xl font-bold text-secondary-900 space-x-2.5 sm:text-3xl>span>File Chaos: Why the Construction Industry Needs a New Approach to Managing Reality Capture Data/span>/h3>/a>div classarticle-author relative flex items-center gap-2>img altSampo Lappalainen srchttps://www.notion.so/image/https:%2F%2Fprod-files-secure.s3.us-west-2.amazonaws.com%2F0524a0b1-eb46-4cd8-8081-a3698d28f579%2Fd026f54c-5f96-45a5-a4f8-b4b95d1d278d%2FVYLE9ePguub4Ia5QtLSBdimIFXw.avif?tableblock&id12911b43-120a-8088-a4dc-f3badf2e8aa0&cachev2 classh-8 w-8 shrink-0 object-cover rounded-full/>a classtext-base font-semibold text-secondary-900 transition-all duration-200 hover:text-primary-500 data-umami-eventClicked Link: /sampo data-umami-href/sampo href/sampo>Sampo Lappalainenspan classabsolute inset-0 aria-hiddentrue>/span>/a>/div>/div>div classflex-1 space-y-5>a classaspect-w-2 aspect-h-1 block overflow-hidden shadow rounded-2xl data-umami-eventClicked Link: /file-chaos-why-the-construction-industry-needs-a-new-approach-to-managing-reality-capture-data data-umami-href/file-chaos-why-the-construction-industry-needs-a-new-approach-to-managing-reality-capture-data href/file-chaos-why-the-construction-industry-needs-a-new-approach-to-managing-reality-capture-data>img altFile Chaos: Why the Construction Industry Needs a New Approach to Managing Reality Capture Data srchttps://www.notion.so/image/https:%2F%2Fprod-files-secure.s3.us-west-2.amazonaws.com%2F0524a0b1-eb46-4cd8-8081-a3698d28f579%2F46322808-d93a-4e69-b5c7-1a119120ec1b%2Fu3525751529_DSLR_image_from_a_construction_site_where_a_const_7efae00d-10c3-4ccf-808f-82010aa7f713_3.png?tableblock&id14a11b43-120a-8018-9997-d8b7ffb0f0c7&cachev2 classh-full w-full object-cover transition-all duration-200 hover:scale-110/>/a>div classflex flex-wrap gap-2>/div>a classblock data-umami-eventClicked Link: /file-chaos-why-the-construction-industry-needs-a-new-approach-to-managing-reality-capture-data data-umami-href/file-chaos-why-the-construction-industry-needs-a-new-approach-to-managing-reality-capture-data href/file-chaos-why-the-construction-industry-needs-a-new-approach-to-managing-reality-capture-data>p classarticle-excerpt text-lg font-normal text-secondary-600 line-clamp-3 lg:line-clamp-none>Reality capture data is growing exponentially in the construction industry, yet the methods for managing it remain outdated and inefficient. At LumiDB, we’re building a solution to tackle this problem, paving the way for a future where construction sites are fully integrated and autonomous./p>/a>p classflex text-sm font-semibold uppercase tracking-widest text-secondary-900 hover:text-primary-500>a classinline-flex items-center data-umami-eventClicked Link: /file-chaos-why-the-construction-industry-needs-a-new-approach-to-managing-reality-capture-data data-umami-href/file-chaos-why-the-construction-industry-needs-a-new-approach-to-managing-reality-capture-data href/file-chaos-why-the-construction-industry-needs-a-new-approach-to-managing-reality-capture-data>Read Moresvg classh-4 w-4 transform transition-all duration-100 ml-2 group-hover:translate-x-1 xmlnshttp://www.w3.org/2000/svg fillnone viewBox0 0 24 24 strokecurrentColor stroke-width2>path stroke-linecapround stroke-linejoinround dM17 8l4 4m0 0l-4 4m4-4H3>/path>/svg>/a>/p>/div>/div>div classchangelog-article flex flex-col gap-6 py-12 sm:gap-8 lg:flex-row lg:items-start lg:gap-12 lg:py-16 xl:gap-20>div classw-full shrink-0 space-y-4 lg:sticky lg:max-w-sm lg:top-8>p classarticle-publish-date text-base font-medium text-secondary-500>time dateTime2024-11-15>Nov 15, 2024/time>/p>a classblock data-umami-eventClicked Link: /why-we-re-fixing-reality-capture-data data-umami-href/why-we-re-fixing-reality-capture-data href/why-we-re-fixing-reality-capture-data>h3 classarticle-title text-2xl font-bold text-secondary-900 space-x-2.5 sm:text-3xl>span>Why We’re Fixing Reality Capture Data/span>/h3>/a>div classarticle-author relative flex items-center gap-2>img altSampo Lappalainen srchttps://www.notion.so/image/https:%2F%2Fprod-files-secure.s3.us-west-2.amazonaws.com%2F0524a0b1-eb46-4cd8-8081-a3698d28f579%2Fd026f54c-5f96-45a5-a4f8-b4b95d1d278d%2FVYLE9ePguub4Ia5QtLSBdimIFXw.avif?tableblock&id12911b43-120a-8088-a4dc-f3badf2e8aa0&cachev2 classh-8 w-8 shrink-0 object-cover rounded-full/>a classtext-base font-semibold text-secondary-900 transition-all duration-200 hover:text-primary-500 data-umami-eventClicked Link: /sampo data-umami-href/sampo href/sampo>Sampo Lappalainenspan classabsolute inset-0 aria-hiddentrue>/span>/a>/div>div classarticle-author relative flex items-center gap-2>img altJasin Bushnaief srchttps://www.notion.so/image/https:%2F%2Fprod-files-secure.s3.us-west-2.amazonaws.com%2F0524a0b1-eb46-4cd8-8081-a3698d28f579%2F72c5ae9d-33d7-40e7-ae91-451a0f9095dc%2FvhHrb4Ui0L1aO5U9K6uortkPA.avif?tableblock&id12911b43-120a-80f6-b20a-c56133b859a6&cachev2 classh-8 w-8 shrink-0 object-cover rounded-full/>a classtext-base font-semibold text-secondary-900 transition-all duration-200 hover:text-primary-500 data-umami-eventClicked Link: /jasin data-umami-href/jasin href/jasin>Jasin Bushnaiefspan classabsolute inset-0 aria-hiddentrue>/span>/a>/div>/div>div classflex-1 space-y-5>a classaspect-w-2 aspect-h-1 block overflow-hidden shadow rounded-2xl data-umami-eventClicked Link: /why-we-re-fixing-reality-capture-data data-umami-href/why-we-re-fixing-reality-capture-data href/why-we-re-fixing-reality-capture-data>img altWhy We’re Fixing Reality Capture Data srchttps://www.notion.so/image/https:%2F%2Fwww.notion.so%2Fimages%2Fpage-cover%2Fnasa_new_york_city_grid.jpg?tableblock&id12911b43-120a-800d-8ba0-d97ea68bbe1b&cachev2 classh-full w-full object-cover transition-all duration-200 hover:scale-110/>/a>div classflex flex-wrap gap-2>/div>a classblock data-umami-eventClicked Link: /why-we-re-fixing-reality-capture-data data-umami-href/why-we-re-fixing-reality-capture-data href/why-we-re-fixing-reality-capture-data>p classarticle-excerpt text-lg font-normal text-secondary-600 line-clamp-3 lg:line-clamp-none>From hacking together data management software for autonomous robots at Amazon to starting LumiDB, this is the story of how we set out to fix reality capture data. Learn how we’re tackling the challenges of exploding data volumes, outdated tools, and scattered workflows to build a future where reality capture data is easily accessible./p>/a>p classflex text-sm font-semibold uppercase tracking-widest text-secondary-900 hover:text-primary-500>a classinline-flex items-center data-umami-eventClicked Link: /why-we-re-fixing-reality-capture-data data-umami-href/why-we-re-fixing-reality-capture-data href/why-we-re-fixing-reality-capture-data>Read Moresvg classh-4 w-4 transform transition-all duration-100 ml-2 group-hover:translate-x-1 xmlnshttp://www.w3.org/2000/svg fillnone viewBox0 0 24 24 strokecurrentColor stroke-width2>path stroke-linecapround stroke-linejoinround dM17 8l4 4m0 0l-4 4m4-4H3>/path>/svg>/a>/p>/div>/div>/div>/div>/div>/section>/main>footer classfooter relative bg-white py-12 sm:py-16>div classmax-w-7xl mx-auto px-4 sm:px-6 lg:px-8>div classflex flex-col items-center gap-y-8 lg:gap-y-12>div>a classfooter-logo flex items-center data-umami-eventClicked Link: / data-umami-href/ href/>img alt srchttps://imagedelivery.net/gLgcD68SxSCB7eEUDDEJXQ/80c96c1b294735fc2fd66882838b30ac_9151cfe6-024e-412f-8ee1-d0b03d8406ef/square classh-8 w-auto mr-1/>/a>/div>ul classfooter-links flex flex-wrap items-center justify-center gap-x-10 gap-y-5>li classfooter-link footer-link-GENERATED_PAGE footer-link-3fcd12e9-2b30-4b8d-9f02-76ed1ba17043>a classtext-base font-medium text-secondary-600 transition-all duration-200 hover:text-primary-500 data-umami-eventClicked Link: /all data-umami-href/all href/all>All Posts/a>/li>li classfooter-link footer-link-EXTERNAL_LINK footer-link-c6d9c96c-19f9-4fba-ab04-029d293fc45e>a target_blank relnoopener hrefhttps://lumidb.com/terms classtext-base font-medium text-secondary-600 transition-all duration-200 hover:text-primary-500 data-umami-eventClicked Link: https://lumidb.com/terms data-umami-hrefhttps://lumidb.com/terms>Terms & Conditions/a>/li>li classfooter-link footer-link-EXTERNAL_LINK footer-link-2e44a9ca-8647-41aa-a690-2d24a0c4778d>a target_blank relnoopener hrefhttps://lumidb.com/impressum-privacy classtext-base font-medium text-secondary-600 transition-all duration-200 hover:text-primary-500 data-umami-eventClicked Link: https://lumidb.com/impressum-privacy data-umami-hrefhttps://lumidb.com/impressum-privacy> Impressum & Privacy/a>/li>li classfooter-link footer-link-EXTERNAL_LINK footer-link-039c9086-754c-4693-9b59-6e810743f47e>a target_blank relnoopener hrefmailto:landingpage@lumidb.com classtext-base font-medium text-secondary-600 transition-all duration-200 hover:text-primary-500 data-umami-eventClicked Link: mailto:landingpage@lumidb.com data-umami-hrefmailto:landingpage@lumidb.com>Email us/a>/li>/ul>ul classfooter-social-links flex flex-wrap items-center justify-center gap-5>li>a target_blank relnoopener hrefhttps://x.com/lumidatabase classinline-flex h-10 w-10 items-center justify-center text-secondary-600 transition-all duration-200 rounded-full hover:bg-primary-50 hover:text-primary-700 data-umami-eventClicked Link: https://x.com/lumidatabase data-umami-hrefhttps://x.com/lumidatabase>span classsr-only>Twitter/span>svg xmlnshttp://www.w3.org/2000/svg viewBox0 0 30 30 fillcurrentColor aria-hiddentrue classh-6 w-6>path dM26.37,26l-8.795-12.822l0.015,0.012L25.52,4h-2.65l-6.46,7.48L11.28,4H4.33l8.211,11.971L12.54,15.97L3.88,26h2.65 l7.182-8.322L19.42,26H26.37z M10.23,6l12.34,18h-2.1L8.12,6H10.23z>/path>/svg>/a>/li>li>a target_blank relnoopener hrefhttps://www.linkedin.com/company/lumidb/ classinline-flex h-10 w-10 items-center justify-center text-secondary-600 transition-all duration-200 rounded-full hover:bg-primary-50 hover:text-primary-700 data-umami-eventClicked Link: https://www.linkedin.com/company/lumidb/ data-umami-hrefhttps://www.linkedin.com/company/lumidb/>span classsr-only>LinkedIn/span>svg xmlnshttp://www.w3.org/2000/svg viewBox0 0 24 24 fillcurrentColor aria-hiddentrue classh-6 w-6>path dM20 3H4a1 1 0 0 0-1 1v16a1 1 0 0 0 1 1h16a1 1 0 0 0 1-1V4a1 1 0 0 0-1-1zM8.339 18.337H5.667v-8.59h2.672v8.59zM7.003 8.574a1.548 1.548 0 1 1 0-3.096 1.548 1.548 0 0 1 0 3.096zm11.335 9.763h-2.669V14.16c0-.996-.018-2.277-1.388-2.277-1.39 0-1.601 1.086-1.601 2.207v4.248h-2.667v-8.59h2.56v1.174h.037c.355-.675 1.227-1.387 2.524-1.387 2.704 0 3.203 1.778 3.203 4.092v4.71z>/path>/svg>/a>/li>li>a target_blank relnoopener hrefhttps://www.youtube.com/@lumidb classinline-flex h-10 w-10 items-center justify-center text-secondary-600 transition-all duration-200 rounded-full hover:bg-primary-50 hover:text-primary-700 data-umami-eventClicked Link: https://www.youtube.com/@lumidb data-umami-hrefhttps://www.youtube.com/@lumidb>span classsr-only>YouTube/span>svg xmlnshttp://www.w3.org/2000/svg viewBox0 0 24 24 fillcurrentColor aria-hiddentrue classh-6 w-6>path dM21.593 7.203a2.506 2.506 0 0 0-1.762-1.766C18.265 5.007 12 5 12 5s-6.264-.007-7.831.404a2.56 2.56 0 0 0-1.766 1.778c-.413 1.566-.417 4.814-.417 4.814s-.004 3.264.406 4.814c.23.857.905 1.534 1.763 1.765 1.582.43 7.83.437 7.83.437s6.265.007 7.831-.403a2.515 2.515 0 0 0 1.767-1.763c.414-1.565.417-4.812.417-4.812s.02-3.265-.407-4.831zM9.996 15.005l.005-6 5.207 3.005-5.212 2.995z>/path>/svg>/a>/li>/ul>p classcopyright-notice text-sm text-secondary-600>© 2024 LumiDB Blog. All Rights Reserved./p>/div>/div>/footer>/section>script>((o, s) > { if (!window.history.state || !window.history.state.key) { let l Math.random().toString(32).slice(2); window.history.replaceState({ key: l }, ); } try { let u JSON.parse(sessionStorage.getItem(o) || {})s || window.history.state.key; typeof u number && window.scrollTo(0, u); } catch (l) { console.error(l), sessionStorage.removeItem(o); } })(positions, /#)/script>link relmodulepreload href/_feather/build/manifest-FDC8B347.js/>link relmodulepreload href/_feather/build/entry.client-UPNL6UIM.js/>link relmodulepreload href/_feather/build/_shared/chunk-5JXLVISB.js/>link relmodulepreload href/_feather/build/_shared/chunk-RA3TLO7C.js/>link relmodulepreload href/_feather/build/_shared/chunk-23UC2UNS.js/>link relmodulepreload href/_feather/build/_shared/chunk-WKCTKT6D.js/>link relmodulepreload href/_feather/build/_shared/chunk-OJBZ3BDE.js/>link relmodulepreload href/_feather/build/_shared/chunk-6N2MNLU4.js/>link relmodulepreload href/_feather/build/_shared/chunk-STHAUFPE.js/>link relmodulepreload href/_feather/build/_shared/chunk-G6O3LCYK.js/>link relmodulepreload href/_feather/build/root-JDE3HOBT.js/>link relmodulepreload href/_feather/build/_shared/chunk-526E7LDQ.js/>link relmodulepreload href/_feather/build/routes/index-CC52OPRR.js/>script>window.__remixContext {state:{loaderData:{root:{indexing:true,imageOptimization:true,host:blog.lumidb.com,subDirectoryDomain:,forwardedHost:blog.lumidb.com,basePath:,isSubPath:false,posts:{notion_data:{id:{type:id,value:2b611b43-120a-803a-9692-cb910f07e83c},page_cover:{type:page_cover,value:https://www.notion.so/image/attachment:d1f3d54f-2758-4e36-bce5-7f215e447272:suvi-blog-header.png?tableblock\u0026id2b611b43-120a-803a-9692-cb910f07e83c\u0026cachev2},page_icon:{type:page_icon,value:},excerpt:{type:text,value:The City of Helsinki’s GIS Centre partnered with LumiDB to test whether its growing archive of point-cloud data could be made broadly usable through browser-based access. The pilot showed faster loading, simpler workflows, and reduced dependency on specialist desktop tools. This case study outlines the problem, the approach, and what changed for planners and GIS teams.},related_posts:{type:relation,value:},do_not_index:{type:checkbox,value:false},last_edited_time:{type:last_edited_time,value:2025-11-26T11:00:22.297Z},extra_info:{type:multi_select,value:},ready_to_publish:{type:checkbox,value:true},hide_cta:{type:checkbox,value:false},hide_cover:{type:checkbox,value:false},meta_description:{type:text,value:The City of Helsinki’s GIS Centre partnered with LumiDB to test whether its growing archive of point-cloud data could be made broadly usable through browser-based access. The pilot showed faster loading, simpler workflows, and reduced dependency on specialist desktop tools. This case study outlines the problem, the approach, and what changed for planners and GIS teams.},meta_title:{type:text,value:How Helsinki’s GIS Centre expanded access to 3D city data with LumiDB},hide_in_main_feed:{type:checkbox,value:false},featured:{type:checkbox,value:false},tags:{type:relation,value:{related_id:2ae11b43-120a-8058-b118-e5053a1bdea1,related_collection_id:0524a0b1-eb46-4cd8-8081-a3698d28f579}},publish_date:{type:date,value:2025-11-26},authors:{type:relation,value:{related_id:12911b43-120a-8088-a4dc-f3badf2e8aa0,related_collection_id:0524a0b1-eb46-4cd8-8081-a3698d28f579}},slug:{type:text,value:case-study-helsinki},name:{type:title,value:How Helsinki’s GIS Centre expanded access to 3D city data with LumiDB}},id:2b611b43-120a-803a-9692-cb910f07e83c,title:How Helsinki’s GIS Centre expanded access to 3D city data with LumiDB,extra_info:,slug:case-study-helsinki,derivedHref:/case-study-helsinki,page_icon:,canonical:,excerpt:The City of Helsinki’s GIS Centre partnered with LumiDB to test whether its growing archive of point-cloud data could be made broadly usable through browser-based access. The pilot showed faster loading, simpler workflows, and reduced dependency on specialist desktop tools. This case study outlines the problem, the approach, and what changed for planners and GIS teams.,tags:2ae11b43-120a-8058-b118-e5053a1bdea1,related_posts:,authors:12911b43-120a-8088-a4dc-f3badf2e8aa0,publish_date:2025-11-26,ready_to_publish:true,cover:https://www.notion.so/image/attachment:d1f3d54f-2758-4e36-bce5-7f215e447272:suvi-blog-header.png?tableblock\u0026id2b611b43-120a-803a-9692-cb910f07e83c\u0026cachev2,og_image:https://www.notion.so/image/attachment:d1f3d54f-2758-4e36-bce5-7f215e447272:suvi-blog-header.png?tableblock\u0026id2b611b43-120a-803a-9692-cb910f07e83c\u0026cachev2,hide_cover:false,featured:false,hide_in_main_feed:false,last_edited_time:2025-11-26T11:00:22.297Z,fallback_cover:,do_not_index:false,meta_title:How Helsinki’s GIS Centre expanded access to 3D city data with LumiDB,meta_description:The City of Helsinki’s GIS Centre partnered with LumiDB to test whether its growing archive of point-cloud data could be made broadly usable through browser-based access. The pilot showed faster loading, simpler workflows, and reduced dependency on specialist desktop tools. This case study outlines the problem, the approach, and what changed for planners and GIS teams.,hide_cta:false,original_canonical:},{notion_data:{id:{type:id,value:2ae11b43-120a-8084-81d0-ebcf041cc1c8},page_cover:{type:page_cover,value:https://www.notion.so/image/attachment:2b028b8a-1ce5-4e2a-98ec-a288552f39e1:blog-kimtoivonen.png?tableblock\u0026id2ae11b43-120a-8084-81d0-ebcf041cc1c8\u0026cachev2},page_icon:{type:page_icon,value:},excerpt:{type:text,value:Infrakit partnered with LumiDB to streamline its point-cloud workflows and replace file-based LOD pipeline. The integration delivered faster rendering, sub-second cross-sections, and a simpler, more stable architecture for handling large LiDAR and drone datasets. This case study outlines how the change was implemented and what improved for engineers and end users.},related_posts:{type:relation,value:},do_not_index:{type:checkbox,value:false},last_edited_time:{type:last_edited_time,value:2025-11-26T12:18:58.689Z},extra_info:{type:multi_select,value:},ready_to_publish:{type:checkbox,value:true},hide_cta:{type:checkbox,value:false},hide_cover:{type:checkbox,value:false},meta_description:{type:text,value:Infrakit partnered with LumiDB to streamline its point-cloud workflows and replace file-based LOD pipeline. The integration delivered faster rendering, sub-second cross-sections, and a simpler, more stable architecture for handling large LiDAR and drone datasets. This case study outlines how the change was implemented and what improved for engineers and end users.},meta_title:{type:text,value:How Infrakit simplified large-scale point-cloud visualization with LumiDB’s query-driven engine},hide_in_main_feed:{type:checkbox,value:false},featured:{type:checkbox,value:false},tags:{type:relation,value:{related_id:2ae11b43-120a-8058-b118-e5053a1bdea1,related_collection_id:0524a0b1-eb46-4cd8-8081-a3698d28f579}},publish_date:{type:date,value:2025-11-18},authors:{type:relation,value:{related_id:12911b43-120a-8088-a4dc-f3badf2e8aa0,related_collection_id:0524a0b1-eb46-4cd8-8081-a3698d28f579}},slug:{type:text,value:case-study-infrakit},name:{type:title,value:How Infrakit simplified large-scale point-cloud visualization with LumiDB’s query-driven engine}},id:2ae11b43-120a-8084-81d0-ebcf041cc1c8,title:How Infrakit simplified large-scale point-cloud visualization with LumiDB’s query-driven engine,extra_info:,slug:case-study-infrakit,derivedHref:/case-study-infrakit,page_icon:,canonical:,excerpt:Infrakit partnered with LumiDB to streamline its point-cloud workflows and replace file-based LOD pipeline. The integration delivered faster rendering, sub-second cross-sections, and a simpler, more stable architecture for handling large LiDAR and drone datasets. This case study outlines how the change was implemented and what improved for engineers and end users.,tags:2ae11b43-120a-8058-b118-e5053a1bdea1,related_posts:,authors:12911b43-120a-8088-a4dc-f3badf2e8aa0,publish_date:2025-11-18,ready_to_publish:true,cover:https://www.notion.so/image/attachment:2b028b8a-1ce5-4e2a-98ec-a288552f39e1:blog-kimtoivonen.png?tableblock\u0026id2ae11b43-120a-8084-81d0-ebcf041cc1c8\u0026cachev2,og_image:https://www.notion.so/image/attachment:2b028b8a-1ce5-4e2a-98ec-a288552f39e1:blog-kimtoivonen.png?tableblock\u0026id2ae11b43-120a-8084-81d0-ebcf041cc1c8\u0026cachev2,hide_cover:false,featured:false,hide_in_main_feed:false,last_edited_time:2025-11-26T12:18:58.689Z,fallback_cover:,do_not_index:false,meta_title:How Infrakit simplified large-scale point-cloud visualization with LumiDB’s query-driven engine,meta_description:Infrakit partnered with LumiDB to streamline its point-cloud workflows and replace file-based LOD pipeline. The integration delivered faster rendering, sub-second cross-sections, and a simpler, more stable architecture for handling large LiDAR and drone datasets. This case study outlines how the change was implemented and what improved for engineers and end users.,hide_cta:false,original_canonical:},{notion_data:{id:{type:id,value:23211b43-120a-80f5-bf3c-cf38e3b8d9d5},page_cover:{type:page_cover,value:https://www.notion.so/image/attachment:556460ef-fd24-473d-8fe8-854e74749ce8:Screenshot_2025-07-16_at_15.12.37.png?tableblock\u0026id23211b43-120a-80f5-bf3c-cf38e3b8d9d5\u0026cachev2},page_icon:{type:page_icon,value:},excerpt:{type:text,value:Swipe Compare: visually slide between two scans. See changes in construction, vegetation, or infrastructure with aligned point clouds.},related_posts:{type:relation,value:},do_not_index:{type:checkbox,value:false},last_edited_time:{type:last_edited_time,value:2025-07-16T12:37:52.329Z},extra_info:{type:multi_select,value:},ready_to_publish:{type:checkbox,value:true},hide_cta:{type:checkbox,value:false},hide_cover:{type:checkbox,value:false},meta_description:{type:text,value:Swipe Compare: visually slide between two scans. See changes in construction, vegetation, or infrastructure with aligned point clouds.},meta_title:{type:text,value:Swipe Compare: Easy way to inspect differences between scans},hide_in_main_feed:{type:checkbox,value:false},featured:{type:checkbox,value:false},tags:{type:relation,value:{related_id:23211b43-120a-80d2-bc27-fb0f53924b0d,related_collection_id:0524a0b1-eb46-4cd8-8081-a3698d28f579}},publish_date:{type:date,value:2025-07-16},authors:{type:relation,value:{related_id:12911b43-120a-8088-a4dc-f3badf2e8aa0,related_collection_id:0524a0b1-eb46-4cd8-8081-a3698d28f579}},slug:{type:text,value:Swipe Compare Easy way to inspect differences between scans},name:{type:title,value:Swipe Compare: Easy way to inspect differences between scans}},id:23211b43-120a-80f5-bf3c-cf38e3b8d9d5,title:Swipe Compare: Easy way to inspect differences between scans,extra_info:,slug:swipe-compare-easy-way-to-inspect-differences-between-scans,derivedHref:/swipe-compare-easy-way-to-inspect-differences-between-scans,page_icon:,canonical:,excerpt:Swipe Compare: visually slide between two scans. See changes in construction, vegetation, or infrastructure with aligned point clouds.,tags:23211b43-120a-80d2-bc27-fb0f53924b0d,related_posts:,authors:12911b43-120a-8088-a4dc-f3badf2e8aa0,publish_date:2025-07-16,ready_to_publish:true,cover:https://www.notion.so/image/attachment:556460ef-fd24-473d-8fe8-854e74749ce8:Screenshot_2025-07-16_at_15.12.37.png?tableblock\u0026id23211b43-120a-80f5-bf3c-cf38e3b8d9d5\u0026cachev2,og_image:https://www.notion.so/image/attachment:556460ef-fd24-473d-8fe8-854e74749ce8:Screenshot_2025-07-16_at_15.12.37.png?tableblock\u0026id23211b43-120a-80f5-bf3c-cf38e3b8d9d5\u0026cachev2,hide_cover:false,featured:false,hide_in_main_feed:false,last_edited_time:2025-07-16T12:37:52.329Z,fallback_cover:,do_not_index:false,meta_title:Swipe Compare: Easy way to inspect differences between scans,meta_description:Swipe Compare: visually slide between two scans. See changes in construction, vegetation, or infrastructure with aligned point clouds.,hide_cta:false,original_canonical:},{notion_data:{id:{type:id,value:23111b43-120a-8015-9c55-d303281bfb3c},page_cover:{type:page_cover,value:https://www.notion.so/image/https:%2F%2Fwww.notion.so%2Fimages%2Fpage-cover%2Fnasa_fingerprints_of_water_on_the_sand.jpg?tableblock\u0026id23111b43-120a-8015-9c55-d303281bfb3c\u0026cachev2},page_icon:{type:page_icon,value:},excerpt:{type:text,value:We’ve released a C client library for importing data into LumiDB. It wraps our HTTP API with a simple C interface. Ideal for integrating with existing C or C++ systems.},related_posts:{type:relation,value:{related_id:1d111b43-120a-8055-946c-e52334f29366,related_collection_id:0524a0b1-eb46-4cd8-8081-a3698d28f579}},do_not_index:{type:checkbox,value:false},last_edited_time:{type:last_edited_time,value:2025-07-16T12:17:52.725Z},extra_info:{type:multi_select,value:},ready_to_publish:{type:checkbox,value:true},hide_cta:{type:checkbox,value:false},hide_cover:{type:checkbox,value:false},meta_description:{type:text,value:We’ve released a C client library for importing data into LumiDB. It wraps our HTTP API with a simple C interface. Ideal for integrating with existing C or C++ systems.},meta_title:{type:text,value:A C/C++ API for data ingestion},hide_in_main_feed:{type:checkbox,value:false},featured:{type:checkbox,value:false},tags:{type:relation,value:{related_id:23211b43-120a-8061-a882-fe74d15b07d1,related_collection_id:0524a0b1-eb46-4cd8-8081-a3698d28f579}},publish_date:{type:date,value:2025-07-15},authors:{type:relation,value:{related_id:19611b43-120a-808a-8e30-cece5dfadd90,related_collection_id:0524a0b1-eb46-4cd8-8081-a3698d28f579}},slug:{type:text,value:A C/C++ API for data ingestion},name:{type:title,value:A C/C++ API for data ingestion}},id:23111b43-120a-8015-9c55-d303281bfb3c,title:A C/C++ API for data ingestion,extra_info:,slug:a-c/c-api-for-data-ingestion,derivedHref:/a-c/c-api-for-data-ingestion,page_icon:,canonical:,excerpt:We’ve released a C client library for importing data into LumiDB. It wraps our HTTP API with a simple C interface. Ideal for integrating with existing C or C++ systems.,tags:23211b43-120a-8061-a882-fe74d15b07d1,related_posts:1d111b43-120a-8055-946c-e52334f29366,authors:19611b43-120a-808a-8e30-cece5dfadd90,publish_date:2025-07-15,ready_to_publish:true,cover:https://www.notion.so/image/https:%2F%2Fwww.notion.so%2Fimages%2Fpage-cover%2Fnasa_fingerprints_of_water_on_the_sand.jpg?tableblock\u0026id23111b43-120a-8015-9c55-d303281bfb3c\u0026cachev2,og_image:https://www.notion.so/image/https:%2F%2Fwww.notion.so%2Fimages%2Fpage-cover%2Fnasa_fingerprints_of_water_on_the_sand.jpg?tableblock\u0026id23111b43-120a-8015-9c55-d303281bfb3c\u0026cachev2,hide_cover:false,featured:false,hide_in_main_feed:false,last_edited_time:2025-07-16T12:17:52.725Z,fallback_cover:,do_not_index:false,meta_title:A C/C++ API for data ingestion,meta_description:We’ve released a C client library for importing data into LumiDB. It wraps our HTTP API with a simple C interface. Ideal for integrating with existing C or C++ systems.,hide_cta:false,original_canonical:},{notion_data:{id:{type:id,value:21f11b43-120a-8089-8d35-d1a15a3f3126},page_cover:{type:page_cover,value:https://www.notion.so/image/attachment:29b9cb35-d43c-48fe-8156-4acc7edd80b1:streaming_viewer_cover.png?tableblock\u0026id21f11b43-120a-8089-8d35-d1a15a3f3126\u0026cachev2},page_icon:{type:page_icon,value:},excerpt:{type:text,value:We’ve brought progressive 3D Tiles streaming to the LumiDB Viewer, letting users instantly see full 3D datasets and get live query results without waiting. This major upgrade is part of a broader summer rollout focused on delivering a smooth, high-performance experience for exploring and analyzing massive point cloud datasets.\n},related_posts:{type:relation,value:{related_id:20d11b43-120a-8095-a005-f10da002882f,related_collection_id:0524a0b1-eb46-4cd8-8081-a3698d28f579}},do_not_index:{type:checkbox,value:false},last_edited_time:{type:last_edited_time,value:2025-07-16T12:18:10.111Z},extra_info:{type:multi_select,value:},ready_to_publish:{type:checkbox,value:true},hide_cta:{type:checkbox,value:false},hide_cover:{type:checkbox,value:false},meta_description:{type:text,value:},meta_title:{type:text,value:},hide_in_main_feed:{type:checkbox,value:false},featured:{type:checkbox,value:true},tags:{type:relation,value:{related_id:23211b43-120a-80d1-9838-d4334e05a3a4,related_collection_id:0524a0b1-eb46-4cd8-8081-a3698d28f579}},publish_date:{type:date,value:2025-06-27},authors:{type:relation,value:{related_id:12911b43-120a-80f6-b20a-c56133b859a6,related_collection_id:0524a0b1-eb46-4cd8-8081-a3698d28f579}},slug:{type:text,value:progressive lod streaming viewer},name:{type:title,value:New in LumiDB: Progressive LOD Streaming Viewer}},id:21f11b43-120a-8089-8d35-d1a15a3f3126,title:New in LumiDB: Progressive LOD Streaming Viewer,extra_info:,slug:progressive-lod-streaming-viewer,derivedHref:/progressive-lod-streaming-viewer,page_icon:,canonical:,excerpt:We’ve brought progressive 3D Tiles streaming to the LumiDB Viewer, letting users instantly see full 3D datasets and get live query results without waiting. This major upgrade is part of a broader summer rollout focused on delivering a smooth, high-performance experience for exploring and analyzing massive point cloud datasets.\n,tags:23211b43-120a-80d1-9838-d4334e05a3a4,related_posts:20d11b43-120a-8095-a005-f10da002882f,authors:12911b43-120a-80f6-b20a-c56133b859a6,publish_date:2025-06-27,ready_to_publish:true,cover:https://www.notion.so/image/attachment:29b9cb35-d43c-48fe-8156-4acc7edd80b1:streaming_viewer_cover.png?tableblock\u0026id21f11b43-120a-8089-8d35-d1a15a3f3126\u0026cachev2,og_image:https://www.notion.so/image/attachment:29b9cb35-d43c-48fe-8156-4acc7edd80b1:streaming_viewer_cover.png?tableblock\u0026id21f11b43-120a-8089-8d35-d1a15a3f3126\u0026cachev2,hide_cover:false,featured:true,hide_in_main_feed:false,last_edited_time:2025-07-16T12:18:10.111Z,fallback_cover:,do_not_index:false,meta_title:New in LumiDB: Progressive LOD Streaming Viewer,meta_description:We’ve brought progressive 3D Tiles streaming to the LumiDB Viewer, letting users instantly see full 3D datasets and get live query results without waiting. This major upgrade is part of a broader summer rollout focused on delivering a smooth, high-performance experience for exploring and analyzing massive point cloud datasets.\n,hide_cta:false,original_canonical:},{notion_data:{id:{type:id,value:20f11b43-120a-80b9-9a2e-d6b089264395},page_cover:{type:page_cover,value:https://www.notion.so/image/attachment:6d012c45-888e-4629-a31c-e5d68cf693fc:Screenshot_2025-06-11_at_14.48.11.png?tableblock\u0026id20f11b43-120a-80b9-9a2e-d6b089264395\u0026cachev2},page_icon:{type:page_icon,value:},excerpt:{type:text,value:National infrastructure operators are generating massive volumes of 3D scan data from drones, mobile scanners, and contractors. This post outlines how LumiDB helps integrate point clouds into GIS, CAD, and BIM workflows as part of a unified digital twin strategy.},related_posts:{type:relation,value:},do_not_index:{type:checkbox,value:false},last_edited_time:{type:last_edited_time,value:2025-06-11T11:49:50.120Z},extra_info:{type:multi_select,value:},ready_to_publish:{type:checkbox,value:true},hide_cta:{type:checkbox,value:false},hide_cover:{type:checkbox,value:false},meta_description:{type:text,value:How infrastructure owners can unify point cloud data from drones, trains, and contractors using LumiDB—streamlining integration with GIS, CAD, and BIM systems for scalable digital twin operations.},meta_title:{type:text,value:Managing national-scale point clouds for digital twins},hide_in_main_feed:{type:checkbox,value:false},featured:{type:checkbox,value:false},tags:{type:relation,value:},publish_date:{type:date,value:2025-06-11},authors:{type:relation,value:{related_id:12911b43-120a-8088-a4dc-f3badf2e8aa0,related_collection_id:0524a0b1-eb46-4cd8-8081-a3698d28f579}},slug:{type:text,value:Managing infrastructure-scale point cloud data with LumiDB},name:{type:title,value:Managing infrastructure-scale point cloud data with LumiDB}},id:20f11b43-120a-80b9-9a2e-d6b089264395,title:Managing infrastructure-scale point cloud data with LumiDB,extra_info:,slug:managing-infrastructure-scale-point-cloud-data-with-lumidb,derivedHref:/managing-infrastructure-scale-point-cloud-data-with-lumidb,page_icon:,canonical:,excerpt:National infrastructure operators are generating massive volumes of 3D scan data from drones, mobile scanners, and contractors. This post outlines how LumiDB helps integrate point clouds into GIS, CAD, and BIM workflows as part of a unified digital twin strategy.,tags:,related_posts:,authors:12911b43-120a-8088-a4dc-f3badf2e8aa0,publish_date:2025-06-11,ready_to_publish:true,cover:https://www.notion.so/image/attachment:6d012c45-888e-4629-a31c-e5d68cf693fc:Screenshot_2025-06-11_at_14.48.11.png?tableblock\u0026id20f11b43-120a-80b9-9a2e-d6b089264395\u0026cachev2,og_image:https://www.notion.so/image/attachment:6d012c45-888e-4629-a31c-e5d68cf693fc:Screenshot_2025-06-11_at_14.48.11.png?tableblock\u0026id20f11b43-120a-80b9-9a2e-d6b089264395\u0026cachev2,hide_cover:false,featured:false,hide_in_main_feed:false,last_edited_time:2025-06-11T11:49:50.120Z,fallback_cover:,do_not_index:false,meta_title:Managing national-scale point clouds for digital twins,meta_description:How infrastructure owners can unify point cloud data from drones, trains, and contractors using LumiDB—streamlining integration with GIS, CAD, and BIM systems for scalable digital twin operations.,hide_cta:false,original_canonical:},{notion_data:{id:{type:id,value:20d11b43-120a-8095-a005-f10da002882f},page_cover:{type:page_cover,value:https://www.notion.so/image/attachment:08ca399b-0697-479d-af7c-0e1d90291153:streaming_cover.png?tableblock\u0026id20d11b43-120a-8095-a005-f10da002882f\u0026cachev2},page_icon:{type:page_icon,value:},excerpt:{type:text,value:LumiDB now supports adaptive level-of-detail streaming via 3D Tiles. This means easy integration into any Cesium.js-based tool, or any tool requiring adaptive streaming of reality capture datasets, even massive ones. We’re also bringing LOD streaming into our own viewer app.},related_posts:{type:relation,value:{related_id:21f11b43-120a-8089-8d35-d1a15a3f3126,related_collection_id:0524a0b1-eb46-4cd8-8081-a3698d28f579},{related_id:2b711b43-120a-80c5-b67f-fb73ba0918d0,related_collection_id:0524a0b1-eb46-4cd8-8081-a3698d28f579}},do_not_index:{type:checkbox,value:false},last_edited_time:{type:last_edited_time,value:2025-07-16T12:17:41.360Z},extra_info:{type:multi_select,value:},ready_to_publish:{type:checkbox,value:true},hide_cta:{type:checkbox,value:false},hide_cover:{type:checkbox,value:false},meta_description:{type:text,value:},meta_title:{type:text,value:},hide_in_main_feed:{type:checkbox,value:false},featured:{type:checkbox,value:false},tags:{type:relation,value:{related_id:23211b43-120a-8025-8eb1-fb7ba53b18d5,related_collection_id:0524a0b1-eb46-4cd8-8081-a3698d28f579}},publish_date:{type:date,value:2025-06-09},authors:{type:relation,value:{related_id:12911b43-120a-80f6-b20a-c56133b859a6,related_collection_id:0524a0b1-eb46-4cd8-8081-a3698d28f579}},slug:{type:text,value:3d tiles support in lumidb},name:{type:title,value:3D Tiles Support in LumiDB: Adaptive Streaming for Any Application}},id:20d11b43-120a-8095-a005-f10da002882f,title:3D Tiles Support in LumiDB: Adaptive Streaming for Any Application,extra_info:,slug:3d-tiles-support-in-lumidb,derivedHref:/3d-tiles-support-in-lumidb,page_icon:,canonical:,excerpt:LumiDB now supports adaptive level-of-detail streaming via 3D Tiles. This means easy integration into any Cesium.js-based tool, or any tool requiring adaptive streaming of reality capture datasets, even massive ones. We’re also bringing LOD streaming into our own viewer app.,tags:23211b43-120a-8025-8eb1-fb7ba53b18d5,related_posts:21f11b43-120a-8089-8d35-d1a15a3f3126,2b711b43-120a-80c5-b67f-fb73ba0918d0,authors:12911b43-120a-80f6-b20a-c56133b859a6,publish_date:2025-06-09,ready_to_publish:true,cover:https://www.notion.so/image/attachment:08ca399b-0697-479d-af7c-0e1d90291153:streaming_cover.png?tableblock\u0026id20d11b43-120a-8095-a005-f10da002882f\u0026cachev2,og_image:https://www.notion.so/image/attachment:08ca399b-0697-479d-af7c-0e1d90291153:streaming_cover.png?tableblock\u0026id20d11b43-120a-8095-a005-f10da002882f\u0026cachev2,hide_cover:false,featured:false,hide_in_main_feed:false,last_edited_time:2025-07-16T12:17:41.360Z,fallback_cover:,do_not_index:false,meta_title:3D Tiles Support in LumiDB: Adaptive Streaming for Any Application,meta_description:LumiDB now supports adaptive level-of-detail streaming via 3D Tiles. This means easy integration into any Cesium.js-based tool, or any tool requiring adaptive streaming of reality capture datasets, even massive ones. We’re also bringing LOD streaming into our own viewer app.,hide_cta:false,original_canonical:},{notion_data:{id:{type:id,value:1d111b43-120a-8055-946c-e52334f29366},page_cover:{type:page_cover,value:https://www.notion.so/image/attachment:4ebffcda-b5b3-451b-a38e-ee87fb02918e:ChatGPT_Image_Apr_10_2025_11_14_23_AM.png?tableblock\u0026id1d111b43-120a-8055-946c-e52334f29366\u0026cachev2},page_icon:{type:page_icon,value:},excerpt:{type:text,value:This post shows you how to import reality capture files into a LumiDB table, by walking through our simple import API.},related_posts:{type:relation,value:{related_id:15911b43-120a-801a-89ed-e4af82757a35,related_collection_id:0524a0b1-eb46-4cd8-8081-a3698d28f579},{related_id:23111b43-120a-8015-9c55-d303281bfb3c,related_collection_id:0524a0b1-eb46-4cd8-8081-a3698d28f579}},do_not_index:{type:checkbox,value:false},last_edited_time:{type:last_edited_time,value:2025-07-16T12:17:31.447Z},extra_info:{type:multi_select,value:},ready_to_publish:{type:checkbox,value:true},hide_cta:{type:checkbox,value:false},hide_cover:{type:checkbox,value:false},meta_description:{type:text,value:},meta_title:{type:text,value:},hide_in_main_feed:{type:checkbox,value:false},featured:{type:checkbox,value:false},tags:{type:relation,value:{related_id:23211b43-120a-80f0-9a6a-c14577de6813,related_collection_id:0524a0b1-eb46-4cd8-8081-a3698d28f579}},publish_date:{type:date,value:2025-04-10},authors:{type:relation,value:{related_id:12911b43-120a-80f6-b20a-c56133b859a6,related_collection_id:0524a0b1-eb46-4cd8-8081-a3698d28f579}},slug:{type:text,value:lumidb import api tutorial},name:{type:title,value:Step-by-Step: Importing Files into LumiDB Using the API}},id:1d111b43-120a-8055-946c-e52334f29366,title:Step-by-Step: Importing Files into LumiDB Using the API,extra_info:,slug:lumidb-import-api-tutorial,derivedHref:/lumidb-import-api-tutorial,page_icon:,canonical:,excerpt:This post shows you how to import reality capture files into a LumiDB table, by walking through our simple import API.,tags:23211b43-120a-80f0-9a6a-c14577de6813,related_posts:15911b43-120a-801a-89ed-e4af82757a35,23111b43-120a-8015-9c55-d303281bfb3c,authors:12911b43-120a-80f6-b20a-c56133b859a6,publish_date:2025-04-10,ready_to_publish:true,cover:https://www.notion.so/image/attachment:4ebffcda-b5b3-451b-a38e-ee87fb02918e:ChatGPT_Image_Apr_10_2025_11_14_23_AM.png?tableblock\u0026id1d111b43-120a-8055-946c-e52334f29366\u0026cachev2,og_image:https://www.notion.so/image/attachment:4ebffcda-b5b3-451b-a38e-ee87fb02918e:ChatGPT_Image_Apr_10_2025_11_14_23_AM.png?tableblock\u0026id1d111b43-120a-8055-946c-e52334f29366\u0026cachev2,hide_cover:false,featured:false,hide_in_main_feed:false,last_edited_time:2025-07-16T12:17:31.447Z,fallback_cover:,do_not_index:false,meta_title:Step-by-Step: Importing Files into LumiDB Using the API,meta_description:This post shows you how to import reality capture files into a LumiDB table, by walking through our simple import API.,hide_cta:false,original_canonical:},{notion_data:{id:{type:id,value:1af11b43-120a-8069-b74a-e7ab974b3d89},page_cover:{type:page_cover,value:https://www.notion.so/image/attachment:7abfaa67-5cd7-464f-a31d-77f4c700c8a3:u3525751529_A_business_professional_overwhelmed_by_a_flood_of_e41b0308-81fe-40ce-9746-67c675bc353e_3.png?tableblock\u0026id1af11b43-120a-8069-b74a-e7ab974b3d89\u0026cachev2},page_icon:{type:page_icon,value:},excerpt:{type:text,value:Reality capture data is a powerful asset, until it turns into a liability. Scans pile up across cloud drives and servers, buried in endless folders with no clear way to retrieve, compare, or integrate them. Teams waste hours chasing down the right version, manually stitching together datasets, and fighting with outdated storage systems. It’s an expensive mess. But what if data didn’t have to be scattered and frustrating? What if it were instantly accessible, easy to explore, and seamlessly connected to your workflows?\n},related_posts:{type:relation,value:},do_not_index:{type:checkbox,value:false},last_edited_time:{type:last_edited_time,value:2025-03-10T14:15:20.198Z},extra_info:{type:multi_select,value:},ready_to_publish:{type:checkbox,value:true},hide_cta:{type:checkbox,value:false},hide_cover:{type:checkbox,value:false},meta_description:{type:text,value:Reality capture data is a powerful asset, until it turns into a liability. Scans pile up across cloud drives and servers, buried in endless folders with no clear way to retrieve, compare, or integrate them. Teams waste hours chasing down the right version, manually stitching together datasets, and fighting with outdated storage systems. It’s an expensive mess. But what if data didn’t have to be scattered and frustrating? What if it were instantly accessible, easy to explore, and seamlessly connected to your workflows?},meta_title:{type:text,value:Drowning in Reality Capture Data? Why Traditional Storage is Failing You},hide_in_main_feed:{type:checkbox,value:false},featured:{type:checkbox,value:false},tags:{type:relation,value:},publish_date:{type:date,value:2025-03-10},authors:{type:relation,value:{related_id:12911b43-120a-8088-a4dc-f3badf2e8aa0,related_collection_id:0524a0b1-eb46-4cd8-8081-a3698d28f579}},slug:{type:text,value:Drowning in Reality Capture Data? Why Traditional Storage is Failing You},name:{type:title,value:Drowning in Reality Capture Data? Why Traditional Storage is Failing You}},id:1af11b43-120a-8069-b74a-e7ab974b3d89,title:Drowning in Reality Capture Data? Why Traditional Storage is Failing You,extra_info:,slug:drowning-in-reality-capture-data-why-traditional-storage-is-failing-you,derivedHref:/drowning-in-reality-capture-data-why-traditional-storage-is-failing-you,page_icon:,canonical:,excerpt:Reality capture data is a powerful asset, until it turns into a liability. Scans pile up across cloud drives and servers, buried in endless folders with no clear way to retrieve, compare, or integrate them. Teams waste hours chasing down the right version, manually stitching together datasets, and fighting with outdated storage systems. It’s an expensive mess. But what if data didn’t have to be scattered and frustrating? What if it were instantly accessible, easy to explore, and seamlessly connected to your workflows?\n,tags:,related_posts:,authors:12911b43-120a-8088-a4dc-f3badf2e8aa0,publish_date:2025-03-10,ready_to_publish:true,cover:https://www.notion.so/image/attachment:7abfaa67-5cd7-464f-a31d-77f4c700c8a3:u3525751529_A_business_professional_overwhelmed_by_a_flood_of_e41b0308-81fe-40ce-9746-67c675bc353e_3.png?tableblock\u0026id1af11b43-120a-8069-b74a-e7ab974b3d89\u0026cachev2,og_image:https://www.notion.so/image/attachment:7abfaa67-5cd7-464f-a31d-77f4c700c8a3:u3525751529_A_business_professional_overwhelmed_by_a_flood_of_e41b0308-81fe-40ce-9746-67c675bc353e_3.png?tableblock\u0026id1af11b43-120a-8069-b74a-e7ab974b3d89\u0026cachev2,hide_cover:false,featured:false,hide_in_main_feed:false,last_edited_time:2025-03-10T14:15:20.198Z,fallback_cover:,do_not_index:false,meta_title:Drowning in Reality Capture Data? Why Traditional Storage is Failing You,meta_description:Reality capture data is a powerful asset, until it turns into a liability. Scans pile up across cloud drives and servers, buried in endless folders with no clear way to retrieve, compare, or integrate them. Teams waste hours chasing down the right version, manually stitching together datasets, and fighting with outdated storage systems. It’s an expensive mess. But what if data didn’t have to be scattered and frustrating? What if it were instantly accessible, easy to explore, and seamlessly connected to your workflows?,hide_cta:false,original_canonical:},{notion_data:{id:{type:id,value:19611b43-120a-8027-aa48-daf4f8b36e4c},page_cover:{type:page_cover,value:https://www.notion.so/image/attachment:38c25c6b-ae8f-4c9e-8c6d-02b9aca3db5e:SCR-20250210-pmok.jpeg?tableblock\u0026id19611b43-120a-8027-aa48-daf4f8b36e4c\u0026cachev2},page_icon:{type:page_icon,value:},excerpt:{type:text,value:Managing and using a terabyte-scale point cloud dataset becomes painful when working with traditional file-based tools and methods. LumiDB might be able to help you here! In this case study we investigate how such a dataset is imported into LumiDB.},related_posts:{type:relation,value:},do_not_index:{type:checkbox,value:false},last_edited_time:{type:last_edited_time,value:2025-07-16T12:17:21.374Z},extra_info:{type:multi_select,value:},ready_to_publish:{type:checkbox,value:true},hide_cta:{type:checkbox,value:false},hide_cover:{type:checkbox,value:false},meta_description:{type:text,value:},meta_title:{type:text,value:},hide_in_main_feed:{type:checkbox,value:false},featured:{type:checkbox,value:false},tags:{type:relation,value:{related_id:23211b43-120a-80d5-a6ed-ef586b9d0b60,related_collection_id:0524a0b1-eb46-4cd8-8081-a3698d28f579}},publish_date:{type:date,value:2025-02-10},authors:{type:relation,value:{related_id:19611b43-120a-808a-8e30-cece5dfadd90,related_collection_id:0524a0b1-eb46-4cd8-8081-a3698d28f579}},slug:{type:text,value:importing a quarter trillion points},name:{type:title,value:Importing a Quarter Trillion Points}},id:19611b43-120a-8027-aa48-daf4f8b36e4c,title:Importing a Quarter Trillion Points,extra_info:,slug:importing-a-quarter-trillion-points,derivedHref:/importing-a-quarter-trillion-points,page_icon:,canonical:,excerpt:Managing and using a terabyte-scale point cloud dataset becomes painful when working with traditional file-based tools and methods. LumiDB might be able to help you here! In this case study we investigate how such a dataset is imported into LumiDB.,tags:23211b43-120a-80d5-a6ed-ef586b9d0b60,related_posts:,authors:19611b43-120a-808a-8e30-cece5dfadd90,publish_date:2025-02-10,ready_to_publish:true,cover:https://www.notion.so/image/attachment:38c25c6b-ae8f-4c9e-8c6d-02b9aca3db5e:SCR-20250210-pmok.jpeg?tableblock\u0026id19611b43-120a-8027-aa48-daf4f8b36e4c\u0026cachev2,og_image:https://www.notion.so/image/attachment:38c25c6b-ae8f-4c9e-8c6d-02b9aca3db5e:SCR-20250210-pmok.jpeg?tableblock\u0026id19611b43-120a-8027-aa48-daf4f8b36e4c\u0026cachev2,hide_cover:false,featured:false,hide_in_main_feed:false,last_edited_time:2025-07-16T12:17:21.374Z,fallback_cover:,do_not_index:false,meta_title:Importing a Quarter Trillion Points,meta_description:Managing and using a terabyte-scale point cloud dataset becomes painful when working with traditional file-based tools and methods. LumiDB might be able to help you here! In this case study we investigate how such a dataset is imported into LumiDB.,hide_cta:false,original_canonical:},{notion_data:{id:{type:id,value:18f11b43-120a-8026-825e-e11f1adafbb3},page_cover:{type:page_cover,value:https://www.notion.so/image/attachment:11349415-db4c-469c-aee3-93d2e86fc10a:blog_header_image.png?tableblock\u0026id18f11b43-120a-8026-825e-e11f1adafbb3\u0026cachev2},page_icon:{type:page_icon,value:},excerpt:{type:text,value:Managing large 3D scan datasets efficiently is challenging—especially when dealing with strict memory constraints. In this post, we explore how metadata queries in LumiDB let you interactively enable and disable scans without ever loading the full dataset into memory. We’ll walk through a real-world example, where a building scan is split into multiple scanner positions, and show how LumiDB’s built-in filtering and level-of-detail (LOD) handling can keep your application fast and responsive. 🚀},related_posts:{type:relation,value:{related_id:15911b43-120a-801a-89ed-e4af82757a35,related_collection_id:0524a0b1-eb46-4cd8-8081-a3698d28f579}},do_not_index:{type:checkbox,value:false},last_edited_time:{type:last_edited_time,value:2025-07-16T12:17:07.226Z},extra_info:{type:multi_select,value:},ready_to_publish:{type:checkbox,value:true},hide_cta:{type:checkbox,value:false},hide_cover:{type:checkbox,value:false},meta_description:{type:text,value:},meta_title:{type:text,value:Leveraging Metadata in LumiDB Queries: A Multi-Scanner Example},hide_in_main_feed:{type:checkbox,value:false},featured:{type:checkbox,value:true},tags:{type:relation,value:{related_id:23211b43-120a-80c4-9e54-f44056a2c019,related_collection_id:0524a0b1-eb46-4cd8-8081-a3698d28f579}},publish_date:{type:date,value:2025-02-03},authors:{type:relation,value:{related_id:12911b43-120a-80f6-b20a-c56133b859a6,related_collection_id:0524a0b1-eb46-4cd8-8081-a3698d28f579}},slug:{type:text,value:leveraging metadata in lumidb queries: a multi-scanner example},name:{type:title,value:Leveraging Metadata in LumiDB Queries: A Multi-Scanner Example}},id:18f11b43-120a-8026-825e-e11f1adafbb3,title:Leveraging Metadata in LumiDB Queries: A Multi-Scanner Example,extra_info:,slug:leveraging-metadata-in-lumidb-queries-a-multi-scanner-example,derivedHref:/leveraging-metadata-in-lumidb-queries-a-multi-scanner-example,page_icon:,canonical:,excerpt:Managing large 3D scan datasets efficiently is challenging—especially when dealing with strict memory constraints. In this post, we explore how metadata queries in LumiDB let you interactively enable and disable scans without ever loading the full dataset into memory. We’ll walk through a real-world example, where a building scan is split into multiple scanner positions, and show how LumiDB’s built-in filtering and level-of-detail (LOD) handling can keep your application fast and responsive. 🚀,tags:23211b43-120a-80c4-9e54-f44056a2c019,related_posts:15911b43-120a-801a-89ed-e4af82757a35,authors:12911b43-120a-80f6-b20a-c56133b859a6,publish_date:2025-02-03,ready_to_publish:true,cover:https://www.notion.so/image/attachment:11349415-db4c-469c-aee3-93d2e86fc10a:blog_header_image.png?tableblock\u0026id18f11b43-120a-8026-825e-e11f1adafbb3\u0026cachev2,og_image:https://www.notion.so/image/attachment:11349415-db4c-469c-aee3-93d2e86fc10a:blog_header_image.png?tableblock\u0026id18f11b43-120a-8026-825e-e11f1adafbb3\u0026cachev2,hide_cover:false,featured:true,hide_in_main_feed:false,last_edited_time:2025-07-16T12:17:07.226Z,fallback_cover:,do_not_index:false,meta_title:Leveraging Metadata in LumiDB Queries: A Multi-Scanner Example,meta_description:Managing large 3D scan datasets efficiently is challenging—especially when dealing with strict memory constraints. In this post, we explore how metadata queries in LumiDB let you interactively enable and disable scans without ever loading the full dataset into memory. We’ll walk through a real-world example, where a building scan is split into multiple scanner positions, and show how LumiDB’s built-in filtering and level-of-detail (LOD) handling can keep your application fast and responsive. 🚀,hide_cta:false,original_canonical:},{notion_data:{id:{type:id,value:15911b43-120a-8032-b99b-ce056625063a},page_cover:{type:page_cover,value:https://www.notion.so/image/https:%2F%2Fprod-files-secure.s3.us-west-2.amazonaws.com%2F0524a0b1-eb46-4cd8-8081-a3698d28f579%2Ffe1f5900-958c-4772-93c0-c190dd784aed%2FScreenshot_2025-01-21_at_16.38.58.png?tableblock\u0026id15911b43-120a-8032-b99b-ce056625063a\u0026cachev2},page_icon:{type:page_icon,value:},excerpt:{type:text,value:Visualizing large 3D point cloud datasets can be a daunting task. With LumiDB, users store their data in a special purpose database that enables efficient querying based on point budget or density, eliminating the need for preprocessing. Beyond visualization, the stored points remain fully usable for other workflows. This post explores the challenges of visualizing massive point cloud datasets and how LumiDB helps.},related_posts:{type:relation,value:},do_not_index:{type:checkbox,value:false},last_edited_time:{type:last_edited_time,value:2025-01-22T11:36:00.010Z},extra_info:{type:multi_select,value:},ready_to_publish:{type:checkbox,value:true},hide_cta:{type:checkbox,value:false},hide_cover:{type:checkbox,value:false},meta_description:{type:text,value:Visualizing large 3D point cloud datasets can be a daunting task. With LumiDB, users store their data in a special purpose database that enables efficient querying based on point budget or density, eliminating the need for preprocessing. Beyond visualization, the stored points remain fully usable for other workflows. This post explores the challenges of visualizing massive point cloud datasets and how LumiDB helps.},meta_title:{type:text,value:Visualizing Massive 3D Point Clouds with Dynamic Level-of-Detail},hide_in_main_feed:{type:checkbox,value:false},featured:{type:checkbox,value:false},tags:{type:relation,value:},publish_date:{type:date,value:2025-01-22},authors:{type:relation,value:{related_id:12911b43-120a-8088-a4dc-f3badf2e8aa0,related_collection_id:0524a0b1-eb46-4cd8-8081-a3698d28f579}},slug:{type:text,value:Visualizing Massive 3D Point Clouds with Dynamic Level-of-Detail},name:{type:title,value:Visualizing Massive 3D Point Clouds with Dynamic Level-of-Detail}},id:15911b43-120a-8032-b99b-ce056625063a,title:Visualizing Massive 3D Point Clouds with Dynamic Level-of-Detail,extra_info:,slug:visualizing-massive-3d-point-clouds-with-dynamic-level-of-detail,derivedHref:/visualizing-massive-3d-point-clouds-with-dynamic-level-of-detail,page_icon:,canonical:,excerpt:Visualizing large 3D point cloud datasets can be a daunting task. With LumiDB, users store their data in a special purpose database that enables efficient querying based on point budget or density, eliminating the need for preprocessing. Beyond visualization, the stored points remain fully usable for other workflows. This post explores the challenges of visualizing massive point cloud datasets and how LumiDB helps.,tags:,related_posts:,authors:12911b43-120a-8088-a4dc-f3badf2e8aa0,publish_date:2025-01-22,ready_to_publish:true,cover:https://www.notion.so/image/https:%2F%2Fprod-files-secure.s3.us-west-2.amazonaws.com%2F0524a0b1-eb46-4cd8-8081-a3698d28f579%2Ffe1f5900-958c-4772-93c0-c190dd784aed%2FScreenshot_2025-01-21_at_16.38.58.png?tableblock\u0026id15911b43-120a-8032-b99b-ce056625063a\u0026cachev2,og_image:https://www.notion.so/image/https:%2F%2Fprod-files-secure.s3.us-west-2.amazonaws.com%2F0524a0b1-eb46-4cd8-8081-a3698d28f579%2Ffe1f5900-958c-4772-93c0-c190dd784aed%2FScreenshot_2025-01-21_at_16.38.58.png?tableblock\u0026id15911b43-120a-8032-b99b-ce056625063a\u0026cachev2,hide_cover:false,featured:false,hide_in_main_feed:false,last_edited_time:2025-01-22T11:36:00.010Z,fallback_cover:,do_not_index:false,meta_title:Visualizing Massive 3D Point Clouds with Dynamic Level-of-Detail,meta_description:Visualizing large 3D point cloud datasets can be a daunting task. With LumiDB, users store their data in a special purpose database that enables efficient querying based on point budget or density, eliminating the need for preprocessing. Beyond visualization, the stored points remain fully usable for other workflows. This post explores the challenges of visualizing massive point cloud datasets and how LumiDB helps.,hide_cta:false,original_canonical:},{notion_data:{id:{type:id,value:15911b43-120a-801a-89ed-e4af82757a35},page_cover:{type:page_cover,value:https://www.notion.so/image/https:%2F%2Fprod-files-secure.s3.us-west-2.amazonaws.com%2F0524a0b1-eb46-4cd8-8081-a3698d28f579%2Fe6bf67c3-b662-40ec-8092-1188414f7211%2Fjavascript_api.png?tableblock\u0026id15911b43-120a-801a-89ed-e4af82757a35\u0026cachev2},page_icon:{type:page_icon,value:},excerpt:{type:text,value:We’re releasing our minimal-yet-powerful runtime API. Whether you’re visualizing in Three.js or exporting data to 3rd party tools, LumiDB is built to make managing reality capture data easy and efficient.},related_posts:{type:relation,value:{related_id:18f11b43-120a-8026-825e-e11f1adafbb3,related_collection_id:0524a0b1-eb46-4cd8-8081-a3698d28f579},{related_id:1d111b43-120a-8055-946c-e52334f29366,related_collection_id:0524a0b1-eb46-4cd8-8081-a3698d28f579}},do_not_index:{type:checkbox,value:false},last_edited_time:{type:last_edited_time,value:2025-07-16T12:16:50.127Z},extra_info:{type:multi_select,value:},ready_to_publish:{type:checkbox,value:true},hide_cta:{type:checkbox,value:false},hide_cover:{type:checkbox,value:false},meta_description:{type:text,value:Discover LumiDB, a lightweight API designed to simplify managing reality capture data like 3D point clouds with powerful queries, metadata filtering, and dynamic resolution.},meta_title:{type:text,value:LumiDB: The Simplest Possible API for Reality Capture Data},hide_in_main_feed:{type:checkbox,value:false},featured:{type:checkbox,value:false},tags:{type:relation,value:{related_id:23211b43-120a-80bf-9e95-fe749f3dd92f,related_collection_id:0524a0b1-eb46-4cd8-8081-a3698d28f579}},publish_date:{type:date,value:2024-12-11},authors:{type:relation,value:{related_id:12911b43-120a-80f6-b20a-c56133b859a6,related_collection_id:0524a0b1-eb46-4cd8-8081-a3698d28f579}},slug:{type:text,value:lumidb the simplest possible api to query reality capture data},name:{type:title,value:LumiDB: The Simplest Possible API for Reality Capture Data}},id:15911b43-120a-801a-89ed-e4af82757a35,title:LumiDB: The Simplest Possible API for Reality Capture Data,extra_info:,slug:lumidb-the-simplest-possible-api-to-query-reality-capture-data,derivedHref:/lumidb-the-simplest-possible-api-to-query-reality-capture-data,page_icon:,canonical:,excerpt:We’re releasing our minimal-yet-powerful runtime API. Whether you’re visualizing in Three.js or exporting data to 3rd party tools, LumiDB is built to make managing reality capture data easy and efficient.,tags:23211b43-120a-80bf-9e95-fe749f3dd92f,related_posts:18f11b43-120a-8026-825e-e11f1adafbb3,1d111b43-120a-8055-946c-e52334f29366,authors:12911b43-120a-80f6-b20a-c56133b859a6,publish_date:2024-12-11,ready_to_publish:true,cover:https://www.notion.so/image/https:%2F%2Fprod-files-secure.s3.us-west-2.amazonaws.com%2F0524a0b1-eb46-4cd8-8081-a3698d28f579%2Fe6bf67c3-b662-40ec-8092-1188414f7211%2Fjavascript_api.png?tableblock\u0026id15911b43-120a-801a-89ed-e4af82757a35\u0026cachev2,og_image:https://www.notion.so/image/https:%2F%2Fprod-files-secure.s3.us-west-2.amazonaws.com%2F0524a0b1-eb46-4cd8-8081-a3698d28f579%2Fe6bf67c3-b662-40ec-8092-1188414f7211%2Fjavascript_api.png?tableblock\u0026id15911b43-120a-801a-89ed-e4af82757a35\u0026cachev2,hide_cover:false,featured:false,hide_in_main_feed:false,last_edited_time:2025-07-16T12:16:50.127Z,fallback_cover:,do_not_index:false,meta_title:LumiDB: The Simplest Possible API for Reality Capture Data,meta_description:Discover LumiDB, a lightweight API designed to simplify managing reality capture data like 3D point clouds with powerful queries, metadata filtering, and dynamic resolution.,hide_cta:false,original_canonical:},{notion_data:{id:{type:id,value:14a11b43-120a-8018-9997-d8b7ffb0f0c7},page_cover:{type:page_cover,value:https://www.notion.so/image/https:%2F%2Fprod-files-secure.s3.us-west-2.amazonaws.com%2F0524a0b1-eb46-4cd8-8081-a3698d28f579%2F46322808-d93a-4e69-b5c7-1a119120ec1b%2Fu3525751529_DSLR_image_from_a_construction_site_where_a_const_7efae00d-10c3-4ccf-808f-82010aa7f713_3.png?tableblock\u0026id14a11b43-120a-8018-9997-d8b7ffb0f0c7\u0026cachev2},page_icon:{type:page_icon,value:},excerpt:{type:text,value:Reality capture data is growing exponentially in the construction industry, yet the methods for managing it remain outdated and inefficient. At LumiDB, we’re building a solution to tackle this problem, paving the way for a future where construction sites are fully integrated and autonomous.},related_posts:{type:relation,value:},do_not_index:{type:checkbox,value:false},last_edited_time:{type:last_edited_time,value:2025-01-23T12:54:07.250Z},extra_info:{type:multi_select,value:},ready_to_publish:{type:checkbox,value:true},hide_cta:{type:checkbox,value:false},hide_cover:{type:checkbox,value:false},meta_description:{type:text,value:File Chaos: Why the Construction Industry Needs a New Approach to Managing Reality Capture Data},meta_title:{type:text,value:File Chaos: Why the Construction Industry Needs a New Approach to Managing Reality Capture Data},hide_in_main_feed:{type:checkbox,value:false},featured:{type:checkbox,value:false},tags:{type:relation,value:},publish_date:{type:date,value:2024-11-26},authors:{type:relation,value:{related_id:12911b43-120a-8088-a4dc-f3badf2e8aa0,related_collection_id:0524a0b1-eb46-4cd8-8081-a3698d28f579}},slug:{type:text,value:file chaos why the construction industry needs a new approach to managing reality capture data},name:{type:title,value:File Chaos: Why the Construction Industry Needs a New Approach to Managing Reality Capture Data}},id:14a11b43-120a-8018-9997-d8b7ffb0f0c7,title:File Chaos: Why the Construction Industry Needs a New Approach to Managing Reality Capture Data,extra_info:,slug:file-chaos-why-the-construction-industry-needs-a-new-approach-to-managing-reality-capture-data,derivedHref:/file-chaos-why-the-construction-industry-needs-a-new-approach-to-managing-reality-capture-data,page_icon:,canonical:,excerpt:Reality capture data is growing exponentially in the construction industry, yet the methods for managing it remain outdated and inefficient. At LumiDB, we’re building a solution to tackle this problem, paving the way for a future where construction sites are fully integrated and autonomous.,tags:,related_posts:,authors:12911b43-120a-8088-a4dc-f3badf2e8aa0,publish_date:2024-11-26,ready_to_publish:true,cover:https://www.notion.so/image/https:%2F%2Fprod-files-secure.s3.us-west-2.amazonaws.com%2F0524a0b1-eb46-4cd8-8081-a3698d28f579%2F46322808-d93a-4e69-b5c7-1a119120ec1b%2Fu3525751529_DSLR_image_from_a_construction_site_where_a_const_7efae00d-10c3-4ccf-808f-82010aa7f713_3.png?tableblock\u0026id14a11b43-120a-8018-9997-d8b7ffb0f0c7\u0026cachev2,og_image:https://www.notion.so/image/https:%2F%2Fprod-files-secure.s3.us-west-2.amazonaws.com%2F0524a0b1-eb46-4cd8-8081-a3698d28f579%2F46322808-d93a-4e69-b5c7-1a119120ec1b%2Fu3525751529_DSLR_image_from_a_construction_site_where_a_const_7efae00d-10c3-4ccf-808f-82010aa7f713_3.png?tableblock\u0026id14a11b43-120a-8018-9997-d8b7ffb0f0c7\u0026cachev2,hide_cover:false,featured:false,hide_in_main_feed:false,last_edited_time:2025-01-23T12:54:07.250Z,fallback_cover:,do_not_index:false,meta_title:File Chaos: Why the Construction Industry Needs a New Approach to Managing Reality Capture Data,meta_description:File Chaos: Why the Construction Industry Needs a New Approach to Managing Reality Capture Data,hide_cta:false,original_canonical:},{notion_data:{id:{type:id,value:12911b43-120a-800d-8ba0-d97ea68bbe1b},page_cover:{type:page_cover,value:https://www.notion.so/image/https:%2F%2Fwww.notion.so%2Fimages%2Fpage-cover%2Fnasa_new_york_city_grid.jpg?tableblock\u0026id12911b43-120a-800d-8ba0-d97ea68bbe1b\u0026cachev2},page_icon:{type:page_icon,value:},excerpt:{type:text,value:From hacking together data management software for autonomous robots at Amazon to starting LumiDB, this is the story of how we set out to fix reality capture data. Learn how we’re tackling the challenges of exploding data volumes, outdated tools, and scattered workflows to build a future where reality capture data is easily accessible.},related_posts:{type:relation,value:},do_not_index:{type:checkbox,value:false},last_edited_time:{type:last_edited_time,value:2024-11-26T08:20:13.585Z},extra_info:{type:multi_select,value:},ready_to_publish:{type:checkbox,value:true},hide_cta:{type:checkbox,value:false},hide_cover:{type:checkbox,value:false},meta_description:{type:text,value:Managing scanned 3D data? Why did we start a company to solve this problem?},meta_title:{type:text,value:Why we’re fixing reality capture data},hide_in_main_feed:{type:checkbox,value:false},featured:{type:checkbox,value:false},tags:{type:relation,value:{related_id:12911b43-120a-801b-889e-c4d8bcc91c6b,related_collection_id:0524a0b1-eb46-4cd8-8081-a3698d28f579}},publish_date:{type:date,value:2024-11-15},authors:{type:relation,value:{related_id:12911b43-120a-8088-a4dc-f3badf2e8aa0,related_collection_id:0524a0b1-eb46-4cd8-8081-a3698d28f579},{related_id:12911b43-120a-80f6-b20a-c56133b859a6,related_collection_id:0524a0b1-eb46-4cd8-8081-a3698d28f579}},slug:{type:text,value:why we’re fixing reality capture data},name:{type:title,value:Why We’re Fixing Reality Capture Data}},id:12911b43-120a-800d-8ba0-d97ea68bbe1b,title:Why We’re Fixing Reality Capture Data,extra_info:,slug:why-we-re-fixing-reality-capture-data,derivedHref:/why-we-re-fixing-reality-capture-data,page_icon:,canonical:,excerpt:From hacking together data management software for autonomous robots at Amazon to starting LumiDB, this is the story of how we set out to fix reality capture data. Learn how we’re tackling the challenges of exploding data volumes, outdated tools, and scattered workflows to build a future where reality capture data is easily accessible.,tags:12911b43-120a-801b-889e-c4d8bcc91c6b,related_posts:,authors:12911b43-120a-8088-a4dc-f3badf2e8aa0,12911b43-120a-80f6-b20a-c56133b859a6,publish_date:2024-11-15,ready_to_publish:true,cover:https://www.notion.so/image/https:%2F%2Fwww.notion.so%2Fimages%2Fpage-cover%2Fnasa_new_york_city_grid.jpg?tableblock\u0026id12911b43-120a-800d-8ba0-d97ea68bbe1b\u0026cachev2,og_image:https://www.notion.so/image/https:%2F%2Fwww.notion.so%2Fimages%2Fpage-cover%2Fnasa_new_york_city_grid.jpg?tableblock\u0026id12911b43-120a-800d-8ba0-d97ea68bbe1b\u0026cachev2,hide_cover:false,featured:false,hide_in_main_feed:false,last_edited_time:2024-11-26T08:20:13.585Z,fallback_cover:,do_not_index:false,meta_title:Why we’re fixing reality capture data,meta_description:Managing scanned 3D data? Why did we start a company to solve this problem?,hide_cta:false,original_canonical:},pages:{notion_data:{id:{type:id,value:12911b43-120a-811d-ad3a-da81e2ee0bfe},page_cover:{type:page_cover,value:},page_icon:{type:page_icon,value:},do_not_index:{type:checkbox,value:false},slug:{type:text,value:contact},hide_cover:{type:checkbox,value:false},meta_title:{type:text,value:},meta_description:{type:text,value:},hide_cta:{type:checkbox,value:false},last_edited_time:{type:last_edited_time,value:2024-10-24T07:46:41.095Z},publish:{type:checkbox,value:true},excerpt:{type:text,value:},name:{type:title,value:Contact}},id:12911b43-120a-811d-ad3a-da81e2ee0bfe,title:Contact,slug:contact,derivedHref:/contact,excerpt:,cover:,og_image:,canonical:,publish:true,hide_cover:false,publish_date:2025-11-26T14:35:45.310Z,last_edited_time:2024-10-24T07:46:41.095Z,fallback_cover:,do_not_index:false,meta_title:Contact,meta_description:,hide_cta:false,original_canonical:},{notion_data:{id:{type:id,value:12911b43-120a-8159-af44-e25a14f83c9a},page_cover:{type:page_cover,value:https://www.notion.so/image/https:%2F%2Fwww.notion.so%2Fimages%2Fpage-cover%2Fsolid_red.png?tableblock\u0026id12911b43-120a-8159-af44-e25a14f83c9a\u0026cachev2},page_icon:{type:page_icon,value:},do_not_index:{type:checkbox,value:false},slug:{type:text,value:about-me},hide_cover:{type:checkbox,value:false},meta_title:{type:text,value:},meta_description:{type:text,value:},hide_cta:{type:checkbox,value:false},last_edited_time:{type:last_edited_time,value:2024-10-24T07:46:41.095Z},publish:{type:checkbox,value:true},excerpt:{type:text,value:},name:{type:title,value:About Me}},id:12911b43-120a-8159-af44-e25a14f83c9a,title:About Me,slug:about-me,derivedHref:/about-me,excerpt:,cover:https://www.notion.so/image/https:%2F%2Fwww.notion.so%2Fimages%2Fpage-cover%2Fsolid_red.png?tableblock\u0026id12911b43-120a-8159-af44-e25a14f83c9a\u0026cachev2,og_image:https://www.notion.so/image/https:%2F%2Fwww.notion.so%2Fimages%2Fpage-cover%2Fsolid_red.png?tableblock\u0026id12911b43-120a-8159-af44-e25a14f83c9a\u0026cachev2,canonical:,publish:true,hide_cover:false,publish_date:2025-11-26T14:35:45.310Z,last_edited_time:2024-10-24T07:46:41.095Z,fallback_cover:,do_not_index:false,meta_title:About Me,meta_description:,hide_cta:false,original_canonical:},{notion_data:{id:{type:id,value:12911b43-120a-81eb-b5be-fd0b95884f33},page_cover:{type:page_cover,value:},page_icon:{type:page_icon,value:},do_not_index:{type:checkbox,value:false},slug:{type:text,value:services},hide_cover:{type:checkbox,value:false},meta_title:{type:text,value:},meta_description:{type:text,value:},hide_cta:{type:checkbox,value:false},last_edited_time:{type:last_edited_time,value:2024-10-24T07:46:41.095Z},publish:{type:checkbox,value:true},excerpt:{type:text,value:},name:{type:title,value:Services}},id:12911b43-120a-81eb-b5be-fd0b95884f33,title:Services,slug:services,derivedHref:/services,excerpt:,cover:,og_image:,canonical:,publish:true,hide_cover:false,publish_date:2025-11-26T14:35:45.310Z,last_edited_time:2024-10-24T07:46:41.095Z,fallback_cover:,do_not_index:false,meta_title:Services,meta_description:,hide_cta:false,original_canonical:},tags:,authors:{notion_data:{id:{type:id,value:12911b43-120a-8088-a4dc-f3badf2e8aa0},page_cover:{type:page_cover,value:},page_icon:{type:page_icon,value:https://www.notion.so/image/https:%2F%2Fprod-files-secure.s3.us-west-2.amazonaws.com%2F0524a0b1-eb46-4cd8-8081-a3698d28f579%2Fd026f54c-5f96-45a5-a4f8-b4b95d1d278d%2FVYLE9ePguub4Ia5QtLSBdimIFXw.avif?tableblock\u0026id12911b43-120a-8088-a4dc-f3badf2e8aa0\u0026cachev2},facebook:{type:url,value:},last_edited_time:{type:last_edited_time,value:2024-11-15T07:27:34.732Z},mastodon:{type:url,value:},meta_title:{type:text,value:},telegram:{type:url,value:},youtube:{type:url,value:},instagram:{type:url,value:},hide_cta:{type:checkbox,value:false},do_not_index:{type:checkbox,value:false},discord:{type:url,value:},linkedin:{type:url,value:},tiktok:{type:url,value:},slug:{type:text,value:sampo},twitter:{type:url,value:},meta_description:{type:text,value:},content:{type:relation,value:{related_id:12911b43-120a-800d-8ba0-d97ea68bbe1b,related_collection_id:0524a0b1-eb46-4cd8-8081-a3698d28f579},{related_id:14a11b43-120a-8018-9997-d8b7ffb0f0c7,related_collection_id:0524a0b1-eb46-4cd8-8081-a3698d28f579},{related_id:15911b43-120a-8032-b99b-ce056625063a,related_collection_id:0524a0b1-eb46-4cd8-8081-a3698d28f579},{related_id:1af11b43-120a-8069-b74a-e7ab974b3d89,related_collection_id:0524a0b1-eb46-4cd8-8081-a3698d28f579},{related_id:20f11b43-120a-80b9-9a2e-d6b089264395,related_collection_id:0524a0b1-eb46-4cd8-8081-a3698d28f579},{related_id:23211b43-120a-80f5-bf3c-cf38e3b8d9d5,related_collection_id:0524a0b1-eb46-4cd8-8081-a3698d28f579},{related_id:2ae11b43-120a-8084-81d0-ebcf041cc1c8,related_collection_id:0524a0b1-eb46-4cd8-8081-a3698d28f579},{related_id:2b611b43-120a-803a-9692-cb910f07e83c,related_collection_id:0524a0b1-eb46-4cd8-8081-a3698d28f579}},publish:{type:checkbox,value:true},description:{type:text,value:CEO, Co-founder},pinterest:{type:url,value:},name:{type:title,value:Sampo Lappalainen}},id:12911b43-120a-8088-a4dc-f3badf2e8aa0,title:Sampo Lappalainen,slug:sampo,derivedHref:/sampo,canonical:,description:CEO, Co-founder,photo:https://www.notion.so/image/https:%2F%2Fprod-files-secure.s3.us-west-2.amazonaws.com%2F0524a0b1-eb46-4cd8-8081-a3698d28f579%2Fd026f54c-5f96-45a5-a4f8-b4b95d1d278d%2FVYLE9ePguub4Ia5QtLSBdimIFXw.avif?tableblock\u0026id12911b43-120a-8088-a4dc-f3badf2e8aa0\u0026cachev2,cover:,og_image:,last_edited_time:2024-11-15T07:27:34.732Z,publish:true,twitter:,linkedin:,instagram:,facebook:,youtube:,github:,pinterest:,tiktok:,telegram:,mastodon:,discord:,threads:,bluesky:,fallback_cover:,do_not_index:false,meta_title:Sampo Lappalainen,meta_description:CEO, Co-founder,hide_cta:false,original_canonical:},{notion_data:{id:{type:id,value:12911b43-120a-80f6-b20a-c56133b859a6},page_cover:{type:page_cover,value:},page_icon:{type:page_icon,value:https://www.notion.so/image/https:%2F%2Fprod-files-secure.s3.us-west-2.amazonaws.com%2F0524a0b1-eb46-4cd8-8081-a3698d28f579%2F72c5ae9d-33d7-40e7-ae91-451a0f9095dc%2FvhHrb4Ui0L1aO5U9K6uortkPA.avif?tableblock\u0026id12911b43-120a-80f6-b20a-c56133b859a6\u0026cachev2},facebook:{type:url,value:},last_edited_time:{type:last_edited_time,value:2024-11-15T07:26:37.493Z},mastodon:{type:url,value:},meta_title:{type:text,value:},telegram:{type:url,value:},youtube:{type:url,value:},instagram:{type:url,value:},hide_cta:{type:checkbox,value:false},do_not_index:{type:checkbox,value:false},discord:{type:url,value:},linkedin:{type:url,value:},tiktok:{type:url,value:},slug:{type:text,value:jasin},twitter:{type:url,value:},meta_description:{type:text,value:},content:{type:relation,value:{related_id:12911b43-120a-800d-8ba0-d97ea68bbe1b,related_collection_id:0524a0b1-eb46-4cd8-8081-a3698d28f579},{related_id:15911b43-120a-801a-89ed-e4af82757a35,related_collection_id:0524a0b1-eb46-4cd8-8081-a3698d28f579},{related_id:18f11b43-120a-8026-825e-e11f1adafbb3,related_collection_id:0524a0b1-eb46-4cd8-8081-a3698d28f579},{related_id:1d111b43-120a-8055-946c-e52334f29366,related_collection_id:0524a0b1-eb46-4cd8-8081-a3698d28f579},{related_id:20d11b43-120a-8095-a005-f10da002882f,related_collection_id:0524a0b1-eb46-4cd8-8081-a3698d28f579},{related_id:21f11b43-120a-8089-8d35-d1a15a3f3126,related_collection_id:0524a0b1-eb46-4cd8-8081-a3698d28f579},{related_id:2b711b43-120a-80c5-b67f-fb73ba0918d0,related_collection_id:0524a0b1-eb46-4cd8-8081-a3698d28f579}},publish:{type:checkbox,value:true},description:{type:text,value:CTO, Co-founder},pinterest:{type:url,value:},name:{type:title,value:Jasin Bushnaief}},id:12911b43-120a-80f6-b20a-c56133b859a6,title:Jasin Bushnaief,slug:jasin,derivedHref:/jasin,canonical:,description:CTO, Co-founder,photo:https://www.notion.so/image/https:%2F%2Fprod-files-secure.s3.us-west-2.amazonaws.com%2F0524a0b1-eb46-4cd8-8081-a3698d28f579%2F72c5ae9d-33d7-40e7-ae91-451a0f9095dc%2FvhHrb4Ui0L1aO5U9K6uortkPA.avif?tableblock\u0026id12911b43-120a-80f6-b20a-c56133b859a6\u0026cachev2,cover:,og_image:,last_edited_time:2024-11-15T07:26:37.493Z,publish:true,twitter:,linkedin:,instagram:,facebook:,youtube:,github:,pinterest:,tiktok:,telegram:,mastodon:,discord:,threads:,bluesky:,fallback_cover:,do_not_index:false,meta_title:Jasin Bushnaief,meta_description:CTO, Co-founder,hide_cta:false,original_canonical:},{notion_data:{id:{type:id,value:19611b43-120a-808a-8e30-cece5dfadd90},page_cover:{type:page_cover,value:},page_icon:{type:page_icon,value:https://www.notion.so/image/attachment:6151120e-8afd-4ac2-9541-a3f9e0f57f8f:35SDFsFtLHsl0DwaetyJDzOMAk.png?tableblock\u0026id19611b43-120a-808a-8e30-cece5dfadd90\u0026cachev2},facebook:{type:url,value:},last_edited_time:{type:last_edited_time,value:2025-02-10T12:34:31.981Z},mastodon:{type:url,value:},meta_title:{type:text,value:},telegram:{type:url,value:},youtube:{type:url,value:},instagram:{type:url,value:},hide_cta:{type:checkbox,value:false},do_not_index:{type:checkbox,value:false},discord:{type:url,value:},linkedin:{type:url,value:},tiktok:{type:url,value:},slug:{type:text,value:alex},twitter:{type:url,value:},meta_description:{type:text,value:},content:{type:relation,value:{related_id:19611b43-120a-8027-aa48-daf4f8b36e4c,related_collection_id:0524a0b1-eb46-4cd8-8081-a3698d28f579},{related_id:23111b43-120a-8015-9c55-d303281bfb3c,related_collection_id:0524a0b1-eb46-4cd8-8081-a3698d28f579}},publish:{type:checkbox,value:true},description:{type:text,value:Lead Developer},pinterest:{type:url,value:},name:{type:title,value:Alex Lagerstedt}},id:19611b43-120a-808a-8e30-cece5dfadd90,title:Alex Lagerstedt,slug:alex,derivedHref:/alex,canonical:,description:Lead Developer,photo:https://www.notion.so/image/attachment:6151120e-8afd-4ac2-9541-a3f9e0f57f8f:35SDFsFtLHsl0DwaetyJDzOMAk.png?tableblock\u0026id19611b43-120a-808a-8e30-cece5dfadd90\u0026cachev2,cover:,og_image:,last_edited_time:2025-02-10T12:34:31.981Z,publish:true,twitter:,linkedin:,instagram:,facebook:,youtube:,github:,pinterest:,tiktok:,telegram:,mastodon:,discord:,threads:,bluesky:,fallback_cover:,do_not_index:false,meta_title:Alex Lagerstedt,meta_description:Lead Developer,hide_cta:false,original_canonical:},publication:{oldId:412612013975404610,name:LumiDB Blog,domain:blog.lumidb.com,settings:{metaTitle:LumiDB blog,metaDescription:We publish case studies, product updates, and technical guidance on handling large-scale 3D data. Our goal is to show how organizations use LumiDB to simplify point-cloud workflows, improve performance, and modernize their spatial data infrastructure.,keywords:,social:{twitter:https://x.com/lumidatabase,facebook:,linkedin:https://www.linkedin.com/company/lumidb/,instagram:,youtube:https://www.youtube.com/@lumidb,pinterest:,tiktok:,telegram:,mastodon:,discord:,github:,threads:,bluesky:,mixcloud:,soundcloud:},socialCover:80c96c1b294735fc2fd66882838b30ac_8232cc0a-1f06-4889-a2b2-a590b67d2983,favicon:80c96c1b294735fc2fd66882838b30ac_f8268401-5b40-4f85-8fd1-79b1d0039b17,logo:{image:80c96c1b294735fc2fd66882838b30ac_9151cfe6-024e-412f-8ee1-d0b03d8406ef,display:text,text:,link:,hideLogoImage:false,hideLogoText:false,openLogoLinkInSameTab:false},navigation:{header:{links:{id:3fcd12e9-1b30-4b8d-9f02-76ed1ba17043,name:All Posts,description:,linkType:GENERATED_PAGE,externalLink:,notionPage:,notionPost:,notionTag:,notionAuthor:,internalPage:,generatedPage:ALL,dropdown:,cta:false,openInSameTab:false,derivedHref:/all},{id:9dc7b331-29c3-4bb6-be64-1f352ca7b046,name:lumidb.com,description:LumiDB website,linkType:EXTERNAL_LINK,externalLink:https://lumidb.com/,notionPage:,notionPost:,notionTag:,notionAuthor:,internalPage:,generatedPage:,dropdown:,cta:false,openInSameTab:false,derivedHref:https://lumidb.com/},{id:db8bd0af-ecfd-41cb-bbed-67c3f8e58fee,name:Book a demo,description:Book a demo,linkType:EXTERNAL_LINK,externalLink:https://calendly.com/sampo-lumidb/lumidb-intro,notionPage:,notionPost:,notionTag:,notionAuthor:,internalPage:,generatedPage:,dropdown:,cta:true,openInSameTab:false,derivedHref:https://calendly.com/sampo-lumidb/lumidb-intro}},footer:{links:{id:3fcd12e9-2b30-4b8d-9f02-76ed1ba17043,name:All Posts,description:,linkType:GENERATED_PAGE,externalLink:,notionPage:,notionPost:,notionTag:,notionAuthor:,internalPage:,generatedPage:ALL,dropdown:,cta:false,openInSameTab:false,derivedHref:/all},{id:c6d9c96c-19f9-4fba-ab04-029d293fc45e,name:Terms \u0026 Conditions,description:Terms \u0026 Conditions,linkType:EXTERNAL_LINK,externalLink:https://lumidb.com/terms,notionPage:,notionPost:,notionTag:,notionAuthor:,internalPage:,generatedPage:,dropdown:,cta:false,openInSameTab:false,derivedHref:https://lumidb.com/terms},{id:2e44a9ca-8647-41aa-a690-2d24a0c4778d,name: Impressum \u0026 Privacy,description:Privacy Policy,linkType:EXTERNAL_LINK,externalLink:https://lumidb.com/impressum-privacy,notionPage:,notionPost:,notionTag:,notionAuthor:,internalPage:,generatedPage:,dropdown:,cta:false,openInSameTab:false,derivedHref:https://lumidb.com/impressum-privacy},{id:039c9086-754c-4693-9b59-6e810743f47e,name:Email us,description:Email,linkType:EXTERNAL_LINK,externalLink:mailto:landingpage@lumidb.com,notionPage:,notionPost:,notionTag:,notionAuthor:,internalPage:,generatedPage:,dropdown:,cta:false,openInSameTab:false,derivedHref:mailto:landingpage@lumidb.com},description:Amet minim mollit non deserunt ullamco est sit aliqua dolor do amet sint. Velit officia consequat duis enim velit mollit.}},cta:{headline:Join other 3200+ marketers now!,text:Ready to take the next big step for your business?,disclaimer:No spam. Unsubscribe at any time.,headlineInHeader:Join other 3200+ marketers now!,textInHeader:Ready to take the next big step for your business?,ctaButtonTextInHeader:Subscribe to newsletter,ctaButtonTextInFooter:Subscribe to newsletter,disclaimerInHeader:No spam. Unsubscribe at any time.,ctaButtonHeading:Join other 3200+ marketers now!,ctaButtonSubHeading:Ready to take the next big step for your business?,ctaButtonText:Subscribe,ctaButtonLink:#newsletter-in-footer-wrapper},features:{subDirectory:false,watermark:false,comments:false,categoryFilters:true,postSidebar:true,pagesSidebar:false,internalPageSidebar:false,indexing:true,sitemap:false,rssFeed:false,siteSearch:true,newsletter:false,newsletterInHero:false,newsletterEmailVerification:true,ctaButton:false,typography:false,pageSize:6,notionPageProperties:false,reversePostsOrder:false,collectionViewDropdown:false,cusdisId:,webhookUrl:,webhookBearerToken:,disqusShortName:,imageZoom:true,disableClientSideRouting:false,interactiveCheckboxes:false,noFollowExternalLinks:false,imageOptimization:true,autoGenerateCovers:true,rtl:false,hideCTAInContentIndex:false,hideCTAInTagsIndex:false,hideCTAInAuthorsIndex:false,pagination:true,featuredPostsInTagPage:false,featuredPostsInAuthorPage:false,api:false,mode:light,modeSwitcher:false,buttonStyle:rounded,navbarLinksAlignment:right,footerStyle:MINIMAL,contentFontFamily:Roboto,headingsFontFamily:Roboto,newsletterWatermark:true},code:{head:\u003c!-- Google tag (gtag.js) --\u003e\n\u003cscript async src\https://www.googletagmanager.com/gtag/js?idG-HPQQH1F2C4\\u003e\u003c/script\u003e\n\u003cscript\u003e\n window.dataLayer window.dataLayer || ;\n function gtag(){dataLayer.push(arguments);}\n gtag(js, new Date());\n\n gtag(config, G-HPQQH1F2C4);\n\u003c/script\u003e,body:,css:@font-face {\r\n font-family: \Polymath Text\; \r\n src: url(\https://lumidb-public.s3.eu-west-1.amazonaws.com/fonts/PolymathText-Light.woff2\) format(\woff2\);\r\n}\r\n\r\n@font-face {\r\n font-family: \Polymath Display Bold\; \r\n src: url(\https://lumidb-public.s3.eu-west-1.amazonaws.com/fonts/PolymathDisp-Bold.woff2\) format(\woff2\);\r\n}\r\n\r\n:root {\r\n --content-font-family: \Polymath Text\, sans-serif !important; \r\n --headings-font-family: \Polymath Display Bold\, sans-serif !important;\r\n --content-font-color: #332C6C;\r\n --headings-font-color: #362D8B;\r\n}\r\n\r\nbody {\r\n font-family: var(--content-font-family) !important;\r\n color: var(--content-font-color) !important;\r\n font-weight: 400 !important; \r\n font-style: normal !important; \r\n font-feature-settings: \cv12\ 1, \cv18\ 1, \cv24\ 1, \cv10\ 1 !important;\r\n font-kerning: normal !important;\r\n\r\n font-variation-settings: normal !important;\r\n letter-spacing: normal !important;\r\n overflow-wrap: break-word !important;\r\n text-align: start !important;\r\n text-decoration-color: rgb(51, 44, 108) !important;\r\n text-decoration-line: none !important;\r\n text-decoration-style: solid !important;\r\n text-decoration-thickness: auto !important;\r\n text-transform: none !important;\r\n text-wrap: wrap !important;\r\n text-wrap-style: auto !important;\r\n white-space-collapse: preserve !important;\r\n -webkit-text-stroke-color: rgb(51, 44, 108) !important;\r\n -webkit-text-stroke-width: 0px !important;\r\n}\r\n\r\nh1, h2, h3, h4, h5, h6 {\r\n font-family: var(--headings-font-family) !important;\r\n color: var(--headings-font-color) !important;\r\n font-weight: 400 !important;\r\n font-style: normal !important; \r\n font-feature-settings: \cv12\ 1, \cv18\ 1, \cv24\ 1, \cv10\ 1 !important;\r\n font-kerning: normal !important;\r\n letter-spacing: 0em !important;\r\n}\r\n\r\n.notion {\r\n color: var(--content-font-color) !important;\r\n}},watermark:{affiliateSlug:,isFixed:false},copyright:© 2024 LumiDB Blog. All Rights Reserved.,tabTitle:,layout:GRID,template:PRODUCT_UPDATES,theme:custom,grayTheme:grayCool,customThemes:{id:01943f24-836e-43ac-9723-d1eb3ed0d3e6,name:Meteorite,primaryColorHex:#362D8B,primaryShade:500},selectedCustomThemeId:01943f24-836e-43ac-9723-d1eb3ed0d3e6,blogIndexTitle:,blogIndexDescription:,htmlLang:,ogLocale:,redirects:},logo:,databases:{content:{url:https://notion.so/12911b43120a813cb8dbc4f993ed0f89,mapping:{id:id,title:name,publish_date:publish_date,slug:slug,excerpt:excerpt,tags:tags,related_posts:related_posts,authors:authors,ready_to_publish:ready_to_publish,cover:page_cover,og_image:,hide_cover:hide_cover,featured:featured,last_edited_time:last_edited_time,extra_info:extra_info,hide_in_main_feed:hide_in_main_feed,fallback_cover:,do_not_index:do_not_index,meta_title:meta_title,meta_description:meta_description,hide_cta:hide_cta,original_canonical:}},pages:{url:https://notion.so/12911b43120a818aabc8eb5e6a0f5b69,mapping:{id:id,title:name,slug:slug,excerpt:excerpt,publish:publish,publish_date:,last_edited_time:last_edited_time,cover:page_cover,og_image:,hide_cover:hide_cover,fallback_cover:,do_not_index:do_not_index,meta_title:meta_title,meta_description:meta_description,hide_cta:hide_cta,original_canonical:}},authors:{url:https://notion.so/12911b43120a81b38a55f50358e5e4e7,mapping:{id:id,title:name,slug:slug,description:description,photo:page_icon,cover:page_cover,og_image:,last_edited_time:last_edited_time,publish:publish,twitter:twitter,linkedin:linkedin,instagram:instagram,facebook:facebook,youtube:youtube,github:,pinterest:pinterest,tiktok:tiktok,telegram:telegram,mastodon:mastodon,discord:discord,threads:,fallback_cover:,do_not_index:do_not_index,meta_title:meta_title,meta_description:meta_description,hide_cta:hide_cta,original_canonical:}},tags:{url:,mapping:{}},internalPages:},seo:{},createdAt:2024-10-24T07:52:10.345835Z,updatedAt:,userId:683963a20fb56d1a9e247b3e,notionWorkspaceDomain:lumidb.notion.site,id:683966657b7bec9a80abc875},website:{id:96fe9439-2ee8-41f1-9bb2-943bba4b2954,name:blog.lumidb.com,domain:blog.lumidb.com,shareId:73c8aa96-9595-412b-bd44-702f7729437f,resetAt:null,userId:f6318f57-d834-4302-a8aa-8633cada8c98,createdAt:2024-11-15T09:22:13.390Z,updatedAt:2024-11-15T09:22:13.390Z,deletedAt:null},canonical:https://blog.lumidb.com,authError:null,urlPrefixes:{content:,pages:,internalPages:,generatedPages:,tags:,authors:,xmlFiles:,contentIndexSlug:all},databaseNames:{content:{singular:post,plural:posts},pages:{singular:page,plural:pages},tags:{singular:tag,plural:tags},authors:{singular:author,plural:authors}},ctaRecordMap:null,ctaPageHTML:,isCTAFullPage:false},routes/index:{publication:{oldId:412612013975404610,name:LumiDB Blog,domain:blog.lumidb.com,settings:{metaTitle:LumiDB blog,metaDescription:We publish case studies, product updates, and technical guidance on handling large-scale 3D data. Our goal is to show how organizations use LumiDB to simplify point-cloud workflows, improve performance, and modernize their spatial data infrastructure.,keywords:,social:{twitter:https://x.com/lumidatabase,facebook:,linkedin:https://www.linkedin.com/company/lumidb/,instagram:,youtube:https://www.youtube.com/@lumidb,pinterest:,tiktok:,telegram:,mastodon:,discord:,github:,threads:,bluesky:,mixcloud:,soundcloud:},socialCover:80c96c1b294735fc2fd66882838b30ac_8232cc0a-1f06-4889-a2b2-a590b67d2983,favicon:80c96c1b294735fc2fd66882838b30ac_f8268401-5b40-4f85-8fd1-79b1d0039b17,logo:{image:80c96c1b294735fc2fd66882838b30ac_9151cfe6-024e-412f-8ee1-d0b03d8406ef,display:text,text:,link:,hideLogoImage:false,hideLogoText:false,openLogoLinkInSameTab:false},navigation:{header:{links:{id:3fcd12e9-1b30-4b8d-9f02-76ed1ba17043,name:All Posts,description:,linkType:GENERATED_PAGE,externalLink:,notionPage:,notionPost:,notionTag:,notionAuthor:,internalPage:,generatedPage:ALL,dropdown:,cta:false,openInSameTab:false,derivedHref:/all},{id:9dc7b331-29c3-4bb6-be64-1f352ca7b046,name:lumidb.com,description:LumiDB website,linkType:EXTERNAL_LINK,externalLink:https://lumidb.com/,notionPage:,notionPost:,notionTag:,notionAuthor:,internalPage:,generatedPage:,dropdown:,cta:false,openInSameTab:false,derivedHref:https://lumidb.com/},{id:db8bd0af-ecfd-41cb-bbed-67c3f8e58fee,name:Book a demo,description:Book a demo,linkType:EXTERNAL_LINK,externalLink:https://calendly.com/sampo-lumidb/lumidb-intro,notionPage:,notionPost:,notionTag:,notionAuthor:,internalPage:,generatedPage:,dropdown:,cta:true,openInSameTab:false,derivedHref:https://calendly.com/sampo-lumidb/lumidb-intro}},footer:{links:{id:3fcd12e9-2b30-4b8d-9f02-76ed1ba17043,name:All Posts,description:,linkType:GENERATED_PAGE,externalLink:,notionPage:,notionPost:,notionTag:,notionAuthor:,internalPage:,generatedPage:ALL,dropdown:,cta:false,openInSameTab:false,derivedHref:/all},{id:c6d9c96c-19f9-4fba-ab04-029d293fc45e,name:Terms \u0026 Conditions,description:Terms \u0026 Conditions,linkType:EXTERNAL_LINK,externalLink:https://lumidb.com/terms,notionPage:,notionPost:,notionTag:,notionAuthor:,internalPage:,generatedPage:,dropdown:,cta:false,openInSameTab:false,derivedHref:https://lumidb.com/terms},{id:2e44a9ca-8647-41aa-a690-2d24a0c4778d,name: Impressum \u0026 Privacy,description:Privacy Policy,linkType:EXTERNAL_LINK,externalLink:https://lumidb.com/impressum-privacy,notionPage:,notionPost:,notionTag:,notionAuthor:,internalPage:,generatedPage:,dropdown:,cta:false,openInSameTab:false,derivedHref:https://lumidb.com/impressum-privacy},{id:039c9086-754c-4693-9b59-6e810743f47e,name:Email us,description:Email,linkType:EXTERNAL_LINK,externalLink:mailto:landingpage@lumidb.com,notionPage:,notionPost:,notionTag:,notionAuthor:,internalPage:,generatedPage:,dropdown:,cta:false,openInSameTab:false,derivedHref:mailto:landingpage@lumidb.com},description:Amet minim mollit non deserunt ullamco est sit aliqua dolor do amet sint. Velit officia consequat duis enim velit mollit.}},cta:{headline:Join other 3200+ marketers now!,text:Ready to take the next big step for your business?,disclaimer:No spam. Unsubscribe at any time.,headlineInHeader:Join other 3200+ marketers now!,textInHeader:Ready to take the next big step for your business?,ctaButtonTextInHeader:Subscribe to newsletter,ctaButtonTextInFooter:Subscribe to newsletter,disclaimerInHeader:No spam. Unsubscribe at any time.,ctaButtonHeading:Join other 3200+ marketers now!,ctaButtonSubHeading:Ready to take the next big step for your business?,ctaButtonText:Subscribe,ctaButtonLink:#newsletter-in-footer-wrapper},features:{subDirectory:false,watermark:false,comments:false,categoryFilters:true,postSidebar:true,pagesSidebar:false,internalPageSidebar:false,indexing:true,sitemap:false,rssFeed:false,siteSearch:true,newsletter:false,newsletterInHero:false,newsletterEmailVerification:true,ctaButton:false,typography:false,pageSize:6,notionPageProperties:false,reversePostsOrder:false,collectionViewDropdown:false,cusdisId:,webhookUrl:,webhookBearerToken:,disqusShortName:,imageZoom:true,disableClientSideRouting:false,interactiveCheckboxes:false,noFollowExternalLinks:false,imageOptimization:true,autoGenerateCovers:true,rtl:false,hideCTAInContentIndex:false,hideCTAInTagsIndex:false,hideCTAInAuthorsIndex:false,pagination:true,featuredPostsInTagPage:false,featuredPostsInAuthorPage:false,api:false,mode:light,modeSwitcher:false,buttonStyle:rounded,navbarLinksAlignment:right,footerStyle:MINIMAL,contentFontFamily:Roboto,headingsFontFamily:Roboto,newsletterWatermark:true},code:{head:\u003c!-- Google tag (gtag.js) --\u003e\n\u003cscript async src\https://www.googletagmanager.com/gtag/js?idG-HPQQH1F2C4\\u003e\u003c/script\u003e\n\u003cscript\u003e\n window.dataLayer window.dataLayer || ;\n function gtag(){dataLayer.push(arguments);}\n gtag(js, new Date());\n\n gtag(config, G-HPQQH1F2C4);\n\u003c/script\u003e,body:,css:@font-face {\r\n font-family: \Polymath Text\; \r\n src: url(\https://lumidb-public.s3.eu-west-1.amazonaws.com/fonts/PolymathText-Light.woff2\) format(\woff2\);\r\n}\r\n\r\n@font-face {\r\n font-family: \Polymath Display Bold\; \r\n src: url(\https://lumidb-public.s3.eu-west-1.amazonaws.com/fonts/PolymathDisp-Bold.woff2\) format(\woff2\);\r\n}\r\n\r\n:root {\r\n --content-font-family: \Polymath Text\, sans-serif !important; \r\n --headings-font-family: \Polymath Display Bold\, sans-serif !important;\r\n --content-font-color: #332C6C;\r\n --headings-font-color: #362D8B;\r\n}\r\n\r\nbody {\r\n font-family: var(--content-font-family) !important;\r\n color: var(--content-font-color) !important;\r\n font-weight: 400 !important; \r\n font-style: normal !important; \r\n font-feature-settings: \cv12\ 1, \cv18\ 1, \cv24\ 1, \cv10\ 1 !important;\r\n font-kerning: normal !important;\r\n\r\n font-variation-settings: normal !important;\r\n letter-spacing: normal !important;\r\n overflow-wrap: break-word !important;\r\n text-align: start !important;\r\n text-decoration-color: rgb(51, 44, 108) !important;\r\n text-decoration-line: none !important;\r\n text-decoration-style: solid !important;\r\n text-decoration-thickness: auto !important;\r\n text-transform: none !important;\r\n text-wrap: wrap !important;\r\n text-wrap-style: auto !important;\r\n white-space-collapse: preserve !important;\r\n -webkit-text-stroke-color: rgb(51, 44, 108) !important;\r\n -webkit-text-stroke-width: 0px !important;\r\n}\r\n\r\nh1, h2, h3, h4, h5, h6 {\r\n font-family: var(--headings-font-family) !important;\r\n color: var(--headings-font-color) !important;\r\n font-weight: 400 !important;\r\n font-style: normal !important; \r\n font-feature-settings: \cv12\ 1, \cv18\ 1, \cv24\ 1, \cv10\ 1 !important;\r\n font-kerning: normal !important;\r\n letter-spacing: 0em !important;\r\n}\r\n\r\n.notion {\r\n color: var(--content-font-color) !important;\r\n}},watermark:{affiliateSlug:,isFixed:false},copyright:© 2024 LumiDB Blog. All Rights Reserved.,tabTitle:,layout:GRID,template:PRODUCT_UPDATES,theme:custom,grayTheme:grayCool,customThemes:{id:01943f24-836e-43ac-9723-d1eb3ed0d3e6,name:Meteorite,primaryColorHex:#362D8B,primaryShade:500},selectedCustomThemeId:01943f24-836e-43ac-9723-d1eb3ed0d3e6,blogIndexTitle:,blogIndexDescription:,htmlLang:,ogLocale:,redirects:},logo:,databases:{content:{url:https://notion.so/12911b43120a813cb8dbc4f993ed0f89,mapping:{id:id,title:name,publish_date:publish_date,slug:slug,excerpt:excerpt,tags:tags,related_posts:related_posts,authors:authors,ready_to_publish:ready_to_publish,cover:page_cover,og_image:,hide_cover:hide_cover,featured:featured,last_edited_time:last_edited_time,extra_info:extra_info,hide_in_main_feed:hide_in_main_feed,fallback_cover:,do_not_index:do_not_index,meta_title:meta_title,meta_description:meta_description,hide_cta:hide_cta,original_canonical:}},pages:{url:https://notion.so/12911b43120a818aabc8eb5e6a0f5b69,mapping:{id:id,title:name,slug:slug,excerpt:excerpt,publish:publish,publish_date:,last_edited_time:last_edited_time,cover:page_cover,og_image:,hide_cover:hide_cover,fallback_cover:,do_not_index:do_not_index,meta_title:meta_title,meta_description:meta_description,hide_cta:hide_cta,original_canonical:}},authors:{url:https://notion.so/12911b43120a81b38a55f50358e5e4e7,mapping:{id:id,title:name,slug:slug,description:description,photo:page_icon,cover:page_cover,og_image:,last_edited_time:last_edited_time,publish:publish,twitter:twitter,linkedin:linkedin,instagram:instagram,facebook:facebook,youtube:youtube,github:,pinterest:pinterest,tiktok:tiktok,telegram:telegram,mastodon:mastodon,discord:discord,threads:,fallback_cover:,do_not_index:do_not_index,meta_title:meta_title,meta_description:meta_description,hide_cta:hide_cta,original_canonical:}},tags:{url:,mapping:{}},internalPages:},seo:{},createdAt:2024-10-24T07:52:10.345835Z,updatedAt:,userId:683963a20fb56d1a9e247b3e,notionWorkspaceDomain:lumidb.notion.site,id:683966657b7bec9a80abc875},posts:{notion_data:{id:{type:id,value:2b611b43-120a-803a-9692-cb910f07e83c},page_cover:{type:page_cover,value:https://www.notion.so/image/attachment:d1f3d54f-2758-4e36-bce5-7f215e447272:suvi-blog-header.png?tableblock\u0026id2b611b43-120a-803a-9692-cb910f07e83c\u0026cachev2},page_icon:{type:page_icon,value:},excerpt:{type:text,value:The City of Helsinki’s GIS Centre partnered with LumiDB to test whether its growing archive of point-cloud data could be made broadly usable through browser-based access. The pilot showed faster loading, simpler workflows, and reduced dependency on specialist desktop tools. This case study outlines the problem, the approach, and what changed for planners and GIS teams.},related_posts:{type:relation,value:},do_not_index:{type:checkbox,value:false},last_edited_time:{type:last_edited_time,value:2025-11-26T11:00:22.297Z},extra_info:{type:multi_select,value:},ready_to_publish:{type:checkbox,value:true},hide_cta:{type:checkbox,value:false},hide_cover:{type:checkbox,value:false},meta_description:{type:text,value:The City of Helsinki’s GIS Centre partnered with LumiDB to test whether its growing archive of point-cloud data could be made broadly usable through browser-based access. The pilot showed faster loading, simpler workflows, and reduced dependency on specialist desktop tools. This case study outlines the problem, the approach, and what changed for planners and GIS teams.},meta_title:{type:text,value:How Helsinki’s GIS Centre expanded access to 3D city data with LumiDB},hide_in_main_feed:{type:checkbox,value:false},featured:{type:checkbox,value:false},tags:{type:relation,value:{related_id:2ae11b43-120a-8058-b118-e5053a1bdea1,related_collection_id:0524a0b1-eb46-4cd8-8081-a3698d28f579}},publish_date:{type:date,value:2025-11-26},authors:{type:relation,value:{related_id:12911b43-120a-8088-a4dc-f3badf2e8aa0,related_collection_id:0524a0b1-eb46-4cd8-8081-a3698d28f579}},slug:{type:text,value:case-study-helsinki},name:{type:title,value:How Helsinki’s GIS Centre expanded access to 3D city data with LumiDB}},id:2b611b43-120a-803a-9692-cb910f07e83c,title:How Helsinki’s GIS Centre expanded access to 3D city data with LumiDB,extra_info:,slug:case-study-helsinki,derivedHref:/case-study-helsinki,page_icon:,canonical:,excerpt:The City of Helsinki’s GIS Centre partnered with LumiDB to test whether its growing archive of point-cloud data could be made broadly usable through browser-based access. The pilot showed faster loading, simpler workflows, and reduced dependency on specialist desktop tools. This case study outlines the problem, the approach, and what changed for planners and GIS teams.,tags:2ae11b43-120a-8058-b118-e5053a1bdea1,related_posts:,authors:12911b43-120a-8088-a4dc-f3badf2e8aa0,publish_date:2025-11-26,ready_to_publish:true,cover:https://www.notion.so/image/attachment:d1f3d54f-2758-4e36-bce5-7f215e447272:suvi-blog-header.png?tableblock\u0026id2b611b43-120a-803a-9692-cb910f07e83c\u0026cachev2,og_image:https://www.notion.so/image/attachment:d1f3d54f-2758-4e36-bce5-7f215e447272:suvi-blog-header.png?tableblock\u0026id2b611b43-120a-803a-9692-cb910f07e83c\u0026cachev2,hide_cover:false,featured:false,hide_in_main_feed:false,last_edited_time:2025-11-26T11:00:22.297Z,fallback_cover:,do_not_index:false,meta_title:How Helsinki’s GIS Centre expanded access to 3D city data with LumiDB,meta_description:The City of Helsinki’s GIS Centre partnered with LumiDB to test whether its growing archive of point-cloud data could be made broadly usable through browser-based access. The pilot showed faster loading, simpler workflows, and reduced dependency on specialist desktop tools. This case study outlines the problem, the approach, and what changed for planners and GIS teams.,hide_cta:false,original_canonical:},{notion_data:{id:{type:id,value:2ae11b43-120a-8084-81d0-ebcf041cc1c8},page_cover:{type:page_cover,value:https://www.notion.so/image/attachment:2b028b8a-1ce5-4e2a-98ec-a288552f39e1:blog-kimtoivonen.png?tableblock\u0026id2ae11b43-120a-8084-81d0-ebcf041cc1c8\u0026cachev2},page_icon:{type:page_icon,value:},excerpt:{type:text,value:Infrakit partnered with LumiDB to streamline its point-cloud workflows and replace file-based LOD pipeline. The integration delivered faster rendering, sub-second cross-sections, and a simpler, more stable architecture for handling large LiDAR and drone datasets. This case study outlines how the change was implemented and what improved for engineers and end users.},related_posts:{type:relation,value:},do_not_index:{type:checkbox,value:false},last_edited_time:{type:last_edited_time,value:2025-11-26T12:18:58.689Z},extra_info:{type:multi_select,value:},ready_to_publish:{type:checkbox,value:true},hide_cta:{type:checkbox,value:false},hide_cover:{type:checkbox,value:false},meta_description:{type:text,value:Infrakit partnered with LumiDB to streamline its point-cloud workflows and replace file-based LOD pipeline. The integration delivered faster rendering, sub-second cross-sections, and a simpler, more stable architecture for handling large LiDAR and drone datasets. This case study outlines how the change was implemented and what improved for engineers and end users.},meta_title:{type:text,value:How Infrakit simplified large-scale point-cloud visualization with LumiDB’s query-driven engine},hide_in_main_feed:{type:checkbox,value:false},featured:{type:checkbox,value:false},tags:{type:relation,value:{related_id:2ae11b43-120a-8058-b118-e5053a1bdea1,related_collection_id:0524a0b1-eb46-4cd8-8081-a3698d28f579}},publish_date:{type:date,value:2025-11-18},authors:{type:relation,value:{related_id:12911b43-120a-8088-a4dc-f3badf2e8aa0,related_collection_id:0524a0b1-eb46-4cd8-8081-a3698d28f579}},slug:{type:text,value:case-study-infrakit},name:{type:title,value:How Infrakit simplified large-scale point-cloud visualization with LumiDB’s query-driven engine}},id:2ae11b43-120a-8084-81d0-ebcf041cc1c8,title:How Infrakit simplified large-scale point-cloud visualization with LumiDB’s query-driven engine,extra_info:,slug:case-study-infrakit,derivedHref:/case-study-infrakit,page_icon:,canonical:,excerpt:Infrakit partnered with LumiDB to streamline its point-cloud workflows and replace file-based LOD pipeline. The integration delivered faster rendering, sub-second cross-sections, and a simpler, more stable architecture for handling large LiDAR and drone datasets. This case study outlines how the change was implemented and what improved for engineers and end users.,tags:2ae11b43-120a-8058-b118-e5053a1bdea1,related_posts:,authors:12911b43-120a-8088-a4dc-f3badf2e8aa0,publish_date:2025-11-18,ready_to_publish:true,cover:https://www.notion.so/image/attachment:2b028b8a-1ce5-4e2a-98ec-a288552f39e1:blog-kimtoivonen.png?tableblock\u0026id2ae11b43-120a-8084-81d0-ebcf041cc1c8\u0026cachev2,og_image:https://www.notion.so/image/attachment:2b028b8a-1ce5-4e2a-98ec-a288552f39e1:blog-kimtoivonen.png?tableblock\u0026id2ae11b43-120a-8084-81d0-ebcf041cc1c8\u0026cachev2,hide_cover:false,featured:false,hide_in_main_feed:false,last_edited_time:2025-11-26T12:18:58.689Z,fallback_cover:,do_not_index:false,meta_title:How Infrakit simplified large-scale point-cloud visualization with LumiDB’s query-driven engine,meta_description:Infrakit partnered with LumiDB to streamline its point-cloud workflows and replace file-based LOD pipeline. The integration delivered faster rendering, sub-second cross-sections, and a simpler, more stable architecture for handling large LiDAR and drone datasets. This case study outlines how the change was implemented and what improved for engineers and end users.,hide_cta:false,original_canonical:},{notion_data:{id:{type:id,value:23211b43-120a-80f5-bf3c-cf38e3b8d9d5},page_cover:{type:page_cover,value:https://www.notion.so/image/attachment:556460ef-fd24-473d-8fe8-854e74749ce8:Screenshot_2025-07-16_at_15.12.37.png?tableblock\u0026id23211b43-120a-80f5-bf3c-cf38e3b8d9d5\u0026cachev2},page_icon:{type:page_icon,value:},excerpt:{type:text,value:Swipe Compare: visually slide between two scans. See changes in construction, vegetation, or infrastructure with aligned point clouds.},related_posts:{type:relation,value:},do_not_index:{type:checkbox,value:false},last_edited_time:{type:last_edited_time,value:2025-07-16T12:37:52.329Z},extra_info:{type:multi_select,value:},ready_to_publish:{type:checkbox,value:true},hide_cta:{type:checkbox,value:false},hide_cover:{type:checkbox,value:false},meta_description:{type:text,value:Swipe Compare: visually slide between two scans. See changes in construction, vegetation, or infrastructure with aligned point clouds.},meta_title:{type:text,value:Swipe Compare: Easy way to inspect differences between scans},hide_in_main_feed:{type:checkbox,value:false},featured:{type:checkbox,value:false},tags:{type:relation,value:{related_id:23211b43-120a-80d2-bc27-fb0f53924b0d,related_collection_id:0524a0b1-eb46-4cd8-8081-a3698d28f579}},publish_date:{type:date,value:2025-07-16},authors:{type:relation,value:{related_id:12911b43-120a-8088-a4dc-f3badf2e8aa0,related_collection_id:0524a0b1-eb46-4cd8-8081-a3698d28f579}},slug:{type:text,value:Swipe Compare Easy way to inspect differences between scans},name:{type:title,value:Swipe Compare: Easy way to inspect differences between scans}},id:23211b43-120a-80f5-bf3c-cf38e3b8d9d5,title:Swipe Compare: Easy way to inspect differences between scans,extra_info:,slug:swipe-compare-easy-way-to-inspect-differences-between-scans,derivedHref:/swipe-compare-easy-way-to-inspect-differences-between-scans,page_icon:,canonical:,excerpt:Swipe Compare: visually slide between two scans. See changes in construction, vegetation, or infrastructure with aligned point clouds.,tags:23211b43-120a-80d2-bc27-fb0f53924b0d,related_posts:,authors:12911b43-120a-8088-a4dc-f3badf2e8aa0,publish_date:2025-07-16,ready_to_publish:true,cover:https://www.notion.so/image/attachment:556460ef-fd24-473d-8fe8-854e74749ce8:Screenshot_2025-07-16_at_15.12.37.png?tableblock\u0026id23211b43-120a-80f5-bf3c-cf38e3b8d9d5\u0026cachev2,og_image:https://www.notion.so/image/attachment:556460ef-fd24-473d-8fe8-854e74749ce8:Screenshot_2025-07-16_at_15.12.37.png?tableblock\u0026id23211b43-120a-80f5-bf3c-cf38e3b8d9d5\u0026cachev2,hide_cover:false,featured:false,hide_in_main_feed:false,last_edited_time:2025-07-16T12:37:52.329Z,fallback_cover:,do_not_index:false,meta_title:Swipe Compare: Easy way to inspect differences between scans,meta_description:Swipe Compare: visually slide between two scans. See changes in construction, vegetation, or infrastructure with aligned point clouds.,hide_cta:false,original_canonical:},{notion_data:{id:{type:id,value:23111b43-120a-8015-9c55-d303281bfb3c},page_cover:{type:page_cover,value:https://www.notion.so/image/https:%2F%2Fwww.notion.so%2Fimages%2Fpage-cover%2Fnasa_fingerprints_of_water_on_the_sand.jpg?tableblock\u0026id23111b43-120a-8015-9c55-d303281bfb3c\u0026cachev2},page_icon:{type:page_icon,value:},excerpt:{type:text,value:We’ve released a C client library for importing data into LumiDB. It wraps our HTTP API with a simple C interface. Ideal for integrating with existing C or C++ systems.},related_posts:{type:relation,value:{related_id:1d111b43-120a-8055-946c-e52334f29366,related_collection_id:0524a0b1-eb46-4cd8-8081-a3698d28f579}},do_not_index:{type:checkbox,value:false},last_edited_time:{type:last_edited_time,value:2025-07-16T12:17:52.725Z},extra_info:{type:multi_select,value:},ready_to_publish:{type:checkbox,value:true},hide_cta:{type:checkbox,value:false},hide_cover:{type:checkbox,value:false},meta_description:{type:text,value:We’ve released a C client library for importing data into LumiDB. It wraps our HTTP API with a simple C interface. Ideal for integrating with existing C or C++ systems.},meta_title:{type:text,value:A C/C++ API for data ingestion},hide_in_main_feed:{type:checkbox,value:false},featured:{type:checkbox,value:false},tags:{type:relation,value:{related_id:23211b43-120a-8061-a882-fe74d15b07d1,related_collection_id:0524a0b1-eb46-4cd8-8081-a3698d28f579}},publish_date:{type:date,value:2025-07-15},authors:{type:relation,value:{related_id:19611b43-120a-808a-8e30-cece5dfadd90,related_collection_id:0524a0b1-eb46-4cd8-8081-a3698d28f579}},slug:{type:text,value:A C/C++ API for data ingestion},name:{type:title,value:A C/C++ API for data ingestion}},id:23111b43-120a-8015-9c55-d303281bfb3c,title:A C/C++ API for data ingestion,extra_info:,slug:a-c/c-api-for-data-ingestion,derivedHref:/a-c/c-api-for-data-ingestion,page_icon:,canonical:,excerpt:We’ve released a C client library for importing data into LumiDB. It wraps our HTTP API with a simple C interface. Ideal for integrating with existing C or C++ systems.,tags:23211b43-120a-8061-a882-fe74d15b07d1,related_posts:1d111b43-120a-8055-946c-e52334f29366,authors:19611b43-120a-808a-8e30-cece5dfadd90,publish_date:2025-07-15,ready_to_publish:true,cover:https://www.notion.so/image/https:%2F%2Fwww.notion.so%2Fimages%2Fpage-cover%2Fnasa_fingerprints_of_water_on_the_sand.jpg?tableblock\u0026id23111b43-120a-8015-9c55-d303281bfb3c\u0026cachev2,og_image:https://www.notion.so/image/https:%2F%2Fwww.notion.so%2Fimages%2Fpage-cover%2Fnasa_fingerprints_of_water_on_the_sand.jpg?tableblock\u0026id23111b43-120a-8015-9c55-d303281bfb3c\u0026cachev2,hide_cover:false,featured:false,hide_in_main_feed:false,last_edited_time:2025-07-16T12:17:52.725Z,fallback_cover:,do_not_index:false,meta_title:A C/C++ API for data ingestion,meta_description:We’ve released a C client library for importing data into LumiDB. It wraps our HTTP API with a simple C interface. Ideal for integrating with existing C or C++ systems.,hide_cta:false,original_canonical:},{notion_data:{id:{type:id,value:21f11b43-120a-8089-8d35-d1a15a3f3126},page_cover:{type:page_cover,value:https://www.notion.so/image/attachment:29b9cb35-d43c-48fe-8156-4acc7edd80b1:streaming_viewer_cover.png?tableblock\u0026id21f11b43-120a-8089-8d35-d1a15a3f3126\u0026cachev2},page_icon:{type:page_icon,value:},excerpt:{type:text,value:We’ve brought progressive 3D Tiles streaming to the LumiDB Viewer, letting users instantly see full 3D datasets and get live query results without waiting. This major upgrade is part of a broader summer rollout focused on delivering a smooth, high-performance experience for exploring and analyzing massive point cloud datasets.\n},related_posts:{type:relation,value:{related_id:20d11b43-120a-8095-a005-f10da002882f,related_collection_id:0524a0b1-eb46-4cd8-8081-a3698d28f579}},do_not_index:{type:checkbox,value:false},last_edited_time:{type:last_edited_time,value:2025-07-16T12:18:10.111Z},extra_info:{type:multi_select,value:},ready_to_publish:{type:checkbox,value:true},hide_cta:{type:checkbox,value:false},hide_cover:{type:checkbox,value:false},meta_description:{type:text,value:},meta_title:{type:text,value:},hide_in_main_feed:{type:checkbox,value:false},featured:{type:checkbox,value:true},tags:{type:relation,value:{related_id:23211b43-120a-80d1-9838-d4334e05a3a4,related_collection_id:0524a0b1-eb46-4cd8-8081-a3698d28f579}},publish_date:{type:date,value:2025-06-27},authors:{type:relation,value:{related_id:12911b43-120a-80f6-b20a-c56133b859a6,related_collection_id:0524a0b1-eb46-4cd8-8081-a3698d28f579}},slug:{type:text,value:progressive lod streaming viewer},name:{type:title,value:New in LumiDB: Progressive LOD Streaming Viewer}},id:21f11b43-120a-8089-8d35-d1a15a3f3126,title:New in LumiDB: Progressive LOD Streaming Viewer,extra_info:,slug:progressive-lod-streaming-viewer,derivedHref:/progressive-lod-streaming-viewer,page_icon:,canonical:,excerpt:We’ve brought progressive 3D Tiles streaming to the LumiDB Viewer, letting users instantly see full 3D datasets and get live query results without waiting. This major upgrade is part of a broader summer rollout focused on delivering a smooth, high-performance experience for exploring and analyzing massive point cloud datasets.\n,tags:23211b43-120a-80d1-9838-d4334e05a3a4,related_posts:20d11b43-120a-8095-a005-f10da002882f,authors:12911b43-120a-80f6-b20a-c56133b859a6,publish_date:2025-06-27,ready_to_publish:true,cover:https://www.notion.so/image/attachment:29b9cb35-d43c-48fe-8156-4acc7edd80b1:streaming_viewer_cover.png?tableblock\u0026id21f11b43-120a-8089-8d35-d1a15a3f3126\u0026cachev2,og_image:https://www.notion.so/image/attachment:29b9cb35-d43c-48fe-8156-4acc7edd80b1:streaming_viewer_cover.png?tableblock\u0026id21f11b43-120a-8089-8d35-d1a15a3f3126\u0026cachev2,hide_cover:false,featured:true,hide_in_main_feed:false,last_edited_time:2025-07-16T12:18:10.111Z,fallback_cover:,do_not_index:false,meta_title:New in LumiDB: Progressive LOD Streaming Viewer,meta_description:We’ve brought progressive 3D Tiles streaming to the LumiDB Viewer, letting users instantly see full 3D datasets and get live query results without waiting. This major upgrade is part of a broader summer rollout focused on delivering a smooth, high-performance experience for exploring and analyzing massive point cloud datasets.\n,hide_cta:false,original_canonical:},{notion_data:{id:{type:id,value:20f11b43-120a-80b9-9a2e-d6b089264395},page_cover:{type:page_cover,value:https://www.notion.so/image/attachment:6d012c45-888e-4629-a31c-e5d68cf693fc:Screenshot_2025-06-11_at_14.48.11.png?tableblock\u0026id20f11b43-120a-80b9-9a2e-d6b089264395\u0026cachev2},page_icon:{type:page_icon,value:},excerpt:{type:text,value:National infrastructure operators are generating massive volumes of 3D scan data from drones, mobile scanners, and contractors. This post outlines how LumiDB helps integrate point clouds into GIS, CAD, and BIM workflows as part of a unified digital twin strategy.},related_posts:{type:relation,value:},do_not_index:{type:checkbox,value:false},last_edited_time:{type:last_edited_time,value:2025-06-11T11:49:50.120Z},extra_info:{type:multi_select,value:},ready_to_publish:{type:checkbox,value:true},hide_cta:{type:checkbox,value:false},hide_cover:{type:checkbox,value:false},meta_description:{type:text,value:How infrastructure owners can unify point cloud data from drones, trains, and contractors using LumiDB—streamlining integration with GIS, CAD, and BIM systems for scalable digital twin operations.},meta_title:{type:text,value:Managing national-scale point clouds for digital twins},hide_in_main_feed:{type:checkbox,value:false},featured:{type:checkbox,value:false},tags:{type:relation,value:},publish_date:{type:date,value:2025-06-11},authors:{type:relation,value:{related_id:12911b43-120a-8088-a4dc-f3badf2e8aa0,related_collection_id:0524a0b1-eb46-4cd8-8081-a3698d28f579}},slug:{type:text,value:Managing infrastructure-scale point cloud data with LumiDB},name:{type:title,value:Managing infrastructure-scale point cloud data with LumiDB}},id:20f11b43-120a-80b9-9a2e-d6b089264395,title:Managing infrastructure-scale point cloud data with LumiDB,extra_info:,slug:managing-infrastructure-scale-point-cloud-data-with-lumidb,derivedHref:/managing-infrastructure-scale-point-cloud-data-with-lumidb,page_icon:,canonical:,excerpt:National infrastructure operators are generating massive volumes of 3D scan data from drones, mobile scanners, and contractors. This post outlines how LumiDB helps integrate point clouds into GIS, CAD, and BIM workflows as part of a unified digital twin strategy.,tags:,related_posts:,authors:12911b43-120a-8088-a4dc-f3badf2e8aa0,publish_date:2025-06-11,ready_to_publish:true,cover:https://www.notion.so/image/attachment:6d012c45-888e-4629-a31c-e5d68cf693fc:Screenshot_2025-06-11_at_14.48.11.png?tableblock\u0026id20f11b43-120a-80b9-9a2e-d6b089264395\u0026cachev2,og_image:https://www.notion.so/image/attachment:6d012c45-888e-4629-a31c-e5d68cf693fc:Screenshot_2025-06-11_at_14.48.11.png?tableblock\u0026id20f11b43-120a-80b9-9a2e-d6b089264395\u0026cachev2,hide_cover:false,featured:false,hide_in_main_feed:false,last_edited_time:2025-06-11T11:49:50.120Z,fallback_cover:,do_not_index:false,meta_title:Managing national-scale point clouds for digital twins,meta_description:How infrastructure owners can unify point cloud data from drones, trains, and contractors using LumiDB—streamlining integration with GIS, CAD, and BIM systems for scalable digital twin operations.,hide_cta:false,original_canonical:},{notion_data:{id:{type:id,value:20d11b43-120a-8095-a005-f10da002882f},page_cover:{type:page_cover,value:https://www.notion.so/image/attachment:08ca399b-0697-479d-af7c-0e1d90291153:streaming_cover.png?tableblock\u0026id20d11b43-120a-8095-a005-f10da002882f\u0026cachev2},page_icon:{type:page_icon,value:},excerpt:{type:text,value:LumiDB now supports adaptive level-of-detail streaming via 3D Tiles. This means easy integration into any Cesium.js-based tool, or any tool requiring adaptive streaming of reality capture datasets, even massive ones. We’re also bringing LOD streaming into our own viewer app.},related_posts:{type:relation,value:{related_id:21f11b43-120a-8089-8d35-d1a15a3f3126,related_collection_id:0524a0b1-eb46-4cd8-8081-a3698d28f579},{related_id:2b711b43-120a-80c5-b67f-fb73ba0918d0,related_collection_id:0524a0b1-eb46-4cd8-8081-a3698d28f579}},do_not_index:{type:checkbox,value:false},last_edited_time:{type:last_edited_time,value:2025-07-16T12:17:41.360Z},extra_info:{type:multi_select,value:},ready_to_publish:{type:checkbox,value:true},hide_cta:{type:checkbox,value:false},hide_cover:{type:checkbox,value:false},meta_description:{type:text,value:},meta_title:{type:text,value:},hide_in_main_feed:{type:checkbox,value:false},featured:{type:checkbox,value:false},tags:{type:relation,value:{related_id:23211b43-120a-8025-8eb1-fb7ba53b18d5,related_collection_id:0524a0b1-eb46-4cd8-8081-a3698d28f579}},publish_date:{type:date,value:2025-06-09},authors:{type:relation,value:{related_id:12911b43-120a-80f6-b20a-c56133b859a6,related_collection_id:0524a0b1-eb46-4cd8-8081-a3698d28f579}},slug:{type:text,value:3d tiles support in lumidb},name:{type:title,value:3D Tiles Support in LumiDB: Adaptive Streaming for Any Application}},id:20d11b43-120a-8095-a005-f10da002882f,title:3D Tiles Support in LumiDB: Adaptive Streaming for Any Application,extra_info:,slug:3d-tiles-support-in-lumidb,derivedHref:/3d-tiles-support-in-lumidb,page_icon:,canonical:,excerpt:LumiDB now supports adaptive level-of-detail streaming via 3D Tiles. This means easy integration into any Cesium.js-based tool, or any tool requiring adaptive streaming of reality capture datasets, even massive ones. We’re also bringing LOD streaming into our own viewer app.,tags:23211b43-120a-8025-8eb1-fb7ba53b18d5,related_posts:21f11b43-120a-8089-8d35-d1a15a3f3126,2b711b43-120a-80c5-b67f-fb73ba0918d0,authors:12911b43-120a-80f6-b20a-c56133b859a6,publish_date:2025-06-09,ready_to_publish:true,cover:https://www.notion.so/image/attachment:08ca399b-0697-479d-af7c-0e1d90291153:streaming_cover.png?tableblock\u0026id20d11b43-120a-8095-a005-f10da002882f\u0026cachev2,og_image:https://www.notion.so/image/attachment:08ca399b-0697-479d-af7c-0e1d90291153:streaming_cover.png?tableblock\u0026id20d11b43-120a-8095-a005-f10da002882f\u0026cachev2,hide_cover:false,featured:false,hide_in_main_feed:false,last_edited_time:2025-07-16T12:17:41.360Z,fallback_cover:,do_not_index:false,meta_title:3D Tiles Support in LumiDB: Adaptive Streaming for Any Application,meta_description:LumiDB now supports adaptive level-of-detail streaming via 3D Tiles. This means easy integration into any Cesium.js-based tool, or any tool requiring adaptive streaming of reality capture datasets, even massive ones. We’re also bringing LOD streaming into our own viewer app.,hide_cta:false,original_canonical:},{notion_data:{id:{type:id,value:1d111b43-120a-8055-946c-e52334f29366},page_cover:{type:page_cover,value:https://www.notion.so/image/attachment:4ebffcda-b5b3-451b-a38e-ee87fb02918e:ChatGPT_Image_Apr_10_2025_11_14_23_AM.png?tableblock\u0026id1d111b43-120a-8055-946c-e52334f29366\u0026cachev2},page_icon:{type:page_icon,value:},excerpt:{type:text,value:This post shows you how to import reality capture files into a LumiDB table, by walking through our simple import API.},related_posts:{type:relation,value:{related_id:15911b43-120a-801a-89ed-e4af82757a35,related_collection_id:0524a0b1-eb46-4cd8-8081-a3698d28f579},{related_id:23111b43-120a-8015-9c55-d303281bfb3c,related_collection_id:0524a0b1-eb46-4cd8-8081-a3698d28f579}},do_not_index:{type:checkbox,value:false},last_edited_time:{type:last_edited_time,value:2025-07-16T12:17:31.447Z},extra_info:{type:multi_select,value:},ready_to_publish:{type:checkbox,value:true},hide_cta:{type:checkbox,value:false},hide_cover:{type:checkbox,value:false},meta_description:{type:text,value:},meta_title:{type:text,value:},hide_in_main_feed:{type:checkbox,value:false},featured:{type:checkbox,value:false},tags:{type:relation,value:{related_id:23211b43-120a-80f0-9a6a-c14577de6813,related_collection_id:0524a0b1-eb46-4cd8-8081-a3698d28f579}},publish_date:{type:date,value:2025-04-10},authors:{type:relation,value:{related_id:12911b43-120a-80f6-b20a-c56133b859a6,related_collection_id:0524a0b1-eb46-4cd8-8081-a3698d28f579}},slug:{type:text,value:lumidb import api tutorial},name:{type:title,value:Step-by-Step: Importing Files into LumiDB Using the API}},id:1d111b43-120a-8055-946c-e52334f29366,title:Step-by-Step: Importing Files into LumiDB Using the API,extra_info:,slug:lumidb-import-api-tutorial,derivedHref:/lumidb-import-api-tutorial,page_icon:,canonical:,excerpt:This post shows you how to import reality capture files into a LumiDB table, by walking through our simple import API.,tags:23211b43-120a-80f0-9a6a-c14577de6813,related_posts:15911b43-120a-801a-89ed-e4af82757a35,23111b43-120a-8015-9c55-d303281bfb3c,authors:12911b43-120a-80f6-b20a-c56133b859a6,publish_date:2025-04-10,ready_to_publish:true,cover:https://www.notion.so/image/attachment:4ebffcda-b5b3-451b-a38e-ee87fb02918e:ChatGPT_Image_Apr_10_2025_11_14_23_AM.png?tableblock\u0026id1d111b43-120a-8055-946c-e52334f29366\u0026cachev2,og_image:https://www.notion.so/image/attachment:4ebffcda-b5b3-451b-a38e-ee87fb02918e:ChatGPT_Image_Apr_10_2025_11_14_23_AM.png?tableblock\u0026id1d111b43-120a-8055-946c-e52334f29366\u0026cachev2,hide_cover:false,featured:false,hide_in_main_feed:false,last_edited_time:2025-07-16T12:17:31.447Z,fallback_cover:,do_not_index:false,meta_title:Step-by-Step: Importing Files into LumiDB Using the API,meta_description:This post shows you how to import reality capture files into a LumiDB table, by walking through our simple import API.,hide_cta:false,original_canonical:},{notion_data:{id:{type:id,value:1af11b43-120a-8069-b74a-e7ab974b3d89},page_cover:{type:page_cover,value:https://www.notion.so/image/attachment:7abfaa67-5cd7-464f-a31d-77f4c700c8a3:u3525751529_A_business_professional_overwhelmed_by_a_flood_of_e41b0308-81fe-40ce-9746-67c675bc353e_3.png?tableblock\u0026id1af11b43-120a-8069-b74a-e7ab974b3d89\u0026cachev2},page_icon:{type:page_icon,value:},excerpt:{type:text,value:Reality capture data is a powerful asset, until it turns into a liability. Scans pile up across cloud drives and servers, buried in endless folders with no clear way to retrieve, compare, or integrate them. Teams waste hours chasing down the right version, manually stitching together datasets, and fighting with outdated storage systems. It’s an expensive mess. But what if data didn’t have to be scattered and frustrating? What if it were instantly accessible, easy to explore, and seamlessly connected to your workflows?\n},related_posts:{type:relation,value:},do_not_index:{type:checkbox,value:false},last_edited_time:{type:last_edited_time,value:2025-03-10T14:15:20.198Z},extra_info:{type:multi_select,value:},ready_to_publish:{type:checkbox,value:true},hide_cta:{type:checkbox,value:false},hide_cover:{type:checkbox,value:false},meta_description:{type:text,value:Reality capture data is a powerful asset, until it turns into a liability. Scans pile up across cloud drives and servers, buried in endless folders with no clear way to retrieve, compare, or integrate them. Teams waste hours chasing down the right version, manually stitching together datasets, and fighting with outdated storage systems. It’s an expensive mess. But what if data didn’t have to be scattered and frustrating? What if it were instantly accessible, easy to explore, and seamlessly connected to your workflows?},meta_title:{type:text,value:Drowning in Reality Capture Data? Why Traditional Storage is Failing You},hide_in_main_feed:{type:checkbox,value:false},featured:{type:checkbox,value:false},tags:{type:relation,value:},publish_date:{type:date,value:2025-03-10},authors:{type:relation,value:{related_id:12911b43-120a-8088-a4dc-f3badf2e8aa0,related_collection_id:0524a0b1-eb46-4cd8-8081-a3698d28f579}},slug:{type:text,value:Drowning in Reality Capture Data? Why Traditional Storage is Failing You},name:{type:title,value:Drowning in Reality Capture Data? Why Traditional Storage is Failing You}},id:1af11b43-120a-8069-b74a-e7ab974b3d89,title:Drowning in Reality Capture Data? Why Traditional Storage is Failing You,extra_info:,slug:drowning-in-reality-capture-data-why-traditional-storage-is-failing-you,derivedHref:/drowning-in-reality-capture-data-why-traditional-storage-is-failing-you,page_icon:,canonical:,excerpt:Reality capture data is a powerful asset, until it turns into a liability. Scans pile up across cloud drives and servers, buried in endless folders with no clear way to retrieve, compare, or integrate them. Teams waste hours chasing down the right version, manually stitching together datasets, and fighting with outdated storage systems. It’s an expensive mess. But what if data didn’t have to be scattered and frustrating? What if it were instantly accessible, easy to explore, and seamlessly connected to your workflows?\n,tags:,related_posts:,authors:12911b43-120a-8088-a4dc-f3badf2e8aa0,publish_date:2025-03-10,ready_to_publish:true,cover:https://www.notion.so/image/attachment:7abfaa67-5cd7-464f-a31d-77f4c700c8a3:u3525751529_A_business_professional_overwhelmed_by_a_flood_of_e41b0308-81fe-40ce-9746-67c675bc353e_3.png?tableblock\u0026id1af11b43-120a-8069-b74a-e7ab974b3d89\u0026cachev2,og_image:https://www.notion.so/image/attachment:7abfaa67-5cd7-464f-a31d-77f4c700c8a3:u3525751529_A_business_professional_overwhelmed_by_a_flood_of_e41b0308-81fe-40ce-9746-67c675bc353e_3.png?tableblock\u0026id1af11b43-120a-8069-b74a-e7ab974b3d89\u0026cachev2,hide_cover:false,featured:false,hide_in_main_feed:false,last_edited_time:2025-03-10T14:15:20.198Z,fallback_cover:,do_not_index:false,meta_title:Drowning in Reality Capture Data? Why Traditional Storage is Failing You,meta_description:Reality capture data is a powerful asset, until it turns into a liability. Scans pile up across cloud drives and servers, buried in endless folders with no clear way to retrieve, compare, or integrate them. Teams waste hours chasing down the right version, manually stitching together datasets, and fighting with outdated storage systems. It’s an expensive mess. But what if data didn’t have to be scattered and frustrating? What if it were instantly accessible, easy to explore, and seamlessly connected to your workflows?,hide_cta:false,original_canonical:},{notion_data:{id:{type:id,value:19611b43-120a-8027-aa48-daf4f8b36e4c},page_cover:{type:page_cover,value:https://www.notion.so/image/attachment:38c25c6b-ae8f-4c9e-8c6d-02b9aca3db5e:SCR-20250210-pmok.jpeg?tableblock\u0026id19611b43-120a-8027-aa48-daf4f8b36e4c\u0026cachev2},page_icon:{type:page_icon,value:},excerpt:{type:text,value:Managing and using a terabyte-scale point cloud dataset becomes painful when working with traditional file-based tools and methods. LumiDB might be able to help you here! In this case study we investigate how such a dataset is imported into LumiDB.},related_posts:{type:relation,value:},do_not_index:{type:checkbox,value:false},last_edited_time:{type:last_edited_time,value:2025-07-16T12:17:21.374Z},extra_info:{type:multi_select,value:},ready_to_publish:{type:checkbox,value:true},hide_cta:{type:checkbox,value:false},hide_cover:{type:checkbox,value:false},meta_description:{type:text,value:},meta_title:{type:text,value:},hide_in_main_feed:{type:checkbox,value:false},featured:{type:checkbox,value:false},tags:{type:relation,value:{related_id:23211b43-120a-80d5-a6ed-ef586b9d0b60,related_collection_id:0524a0b1-eb46-4cd8-8081-a3698d28f579}},publish_date:{type:date,value:2025-02-10},authors:{type:relation,value:{related_id:19611b43-120a-808a-8e30-cece5dfadd90,related_collection_id:0524a0b1-eb46-4cd8-8081-a3698d28f579}},slug:{type:text,value:importing a quarter trillion points},name:{type:title,value:Importing a Quarter Trillion Points}},id:19611b43-120a-8027-aa48-daf4f8b36e4c,title:Importing a Quarter Trillion Points,extra_info:,slug:importing-a-quarter-trillion-points,derivedHref:/importing-a-quarter-trillion-points,page_icon:,canonical:,excerpt:Managing and using a terabyte-scale point cloud dataset becomes painful when working with traditional file-based tools and methods. LumiDB might be able to help you here! In this case study we investigate how such a dataset is imported into LumiDB.,tags:23211b43-120a-80d5-a6ed-ef586b9d0b60,related_posts:,authors:19611b43-120a-808a-8e30-cece5dfadd90,publish_date:2025-02-10,ready_to_publish:true,cover:https://www.notion.so/image/attachment:38c25c6b-ae8f-4c9e-8c6d-02b9aca3db5e:SCR-20250210-pmok.jpeg?tableblock\u0026id19611b43-120a-8027-aa48-daf4f8b36e4c\u0026cachev2,og_image:https://www.notion.so/image/attachment:38c25c6b-ae8f-4c9e-8c6d-02b9aca3db5e:SCR-20250210-pmok.jpeg?tableblock\u0026id19611b43-120a-8027-aa48-daf4f8b36e4c\u0026cachev2,hide_cover:false,featured:false,hide_in_main_feed:false,last_edited_time:2025-07-16T12:17:21.374Z,fallback_cover:,do_not_index:false,meta_title:Importing a Quarter Trillion Points,meta_description:Managing and using a terabyte-scale point cloud dataset becomes painful when working with traditional file-based tools and methods. LumiDB might be able to help you here! In this case study we investigate how such a dataset is imported into LumiDB.,hide_cta:false,original_canonical:},{notion_data:{id:{type:id,value:18f11b43-120a-8026-825e-e11f1adafbb3},page_cover:{type:page_cover,value:https://www.notion.so/image/attachment:11349415-db4c-469c-aee3-93d2e86fc10a:blog_header_image.png?tableblock\u0026id18f11b43-120a-8026-825e-e11f1adafbb3\u0026cachev2},page_icon:{type:page_icon,value:},excerpt:{type:text,value:Managing large 3D scan datasets efficiently is challenging—especially when dealing with strict memory constraints. In this post, we explore how metadata queries in LumiDB let you interactively enable and disable scans without ever loading the full dataset into memory. We’ll walk through a real-world example, where a building scan is split into multiple scanner positions, and show how LumiDB’s built-in filtering and level-of-detail (LOD) handling can keep your application fast and responsive. 🚀},related_posts:{type:relation,value:{related_id:15911b43-120a-801a-89ed-e4af82757a35,related_collection_id:0524a0b1-eb46-4cd8-8081-a3698d28f579}},do_not_index:{type:checkbox,value:false},last_edited_time:{type:last_edited_time,value:2025-07-16T12:17:07.226Z},extra_info:{type:multi_select,value:},ready_to_publish:{type:checkbox,value:true},hide_cta:{type:checkbox,value:false},hide_cover:{type:checkbox,value:false},meta_description:{type:text,value:},meta_title:{type:text,value:Leveraging Metadata in LumiDB Queries: A Multi-Scanner Example},hide_in_main_feed:{type:checkbox,value:false},featured:{type:checkbox,value:true},tags:{type:relation,value:{related_id:23211b43-120a-80c4-9e54-f44056a2c019,related_collection_id:0524a0b1-eb46-4cd8-8081-a3698d28f579}},publish_date:{type:date,value:2025-02-03},authors:{type:relation,value:{related_id:12911b43-120a-80f6-b20a-c56133b859a6,related_collection_id:0524a0b1-eb46-4cd8-8081-a3698d28f579}},slug:{type:text,value:leveraging metadata in lumidb queries: a multi-scanner example},name:{type:title,value:Leveraging Metadata in LumiDB Queries: A Multi-Scanner Example}},id:18f11b43-120a-8026-825e-e11f1adafbb3,title:Leveraging Metadata in LumiDB Queries: A Multi-Scanner Example,extra_info:,slug:leveraging-metadata-in-lumidb-queries-a-multi-scanner-example,derivedHref:/leveraging-metadata-in-lumidb-queries-a-multi-scanner-example,page_icon:,canonical:,excerpt:Managing large 3D scan datasets efficiently is challenging—especially when dealing with strict memory constraints. In this post, we explore how metadata queries in LumiDB let you interactively enable and disable scans without ever loading the full dataset into memory. We’ll walk through a real-world example, where a building scan is split into multiple scanner positions, and show how LumiDB’s built-in filtering and level-of-detail (LOD) handling can keep your application fast and responsive. 🚀,tags:23211b43-120a-80c4-9e54-f44056a2c019,related_posts:15911b43-120a-801a-89ed-e4af82757a35,authors:12911b43-120a-80f6-b20a-c56133b859a6,publish_date:2025-02-03,ready_to_publish:true,cover:https://www.notion.so/image/attachment:11349415-db4c-469c-aee3-93d2e86fc10a:blog_header_image.png?tableblock\u0026id18f11b43-120a-8026-825e-e11f1adafbb3\u0026cachev2,og_image:https://www.notion.so/image/attachment:11349415-db4c-469c-aee3-93d2e86fc10a:blog_header_image.png?tableblock\u0026id18f11b43-120a-8026-825e-e11f1adafbb3\u0026cachev2,hide_cover:false,featured:true,hide_in_main_feed:false,last_edited_time:2025-07-16T12:17:07.226Z,fallback_cover:,do_not_index:false,meta_title:Leveraging Metadata in LumiDB Queries: A Multi-Scanner Example,meta_description:Managing large 3D scan datasets efficiently is challenging—especially when dealing with strict memory constraints. In this post, we explore how metadata queries in LumiDB let you interactively enable and disable scans without ever loading the full dataset into memory. We’ll walk through a real-world example, where a building scan is split into multiple scanner positions, and show how LumiDB’s built-in filtering and level-of-detail (LOD) handling can keep your application fast and responsive. 🚀,hide_cta:false,original_canonical:},{notion_data:{id:{type:id,value:15911b43-120a-8032-b99b-ce056625063a},page_cover:{type:page_cover,value:https://www.notion.so/image/https:%2F%2Fprod-files-secure.s3.us-west-2.amazonaws.com%2F0524a0b1-eb46-4cd8-8081-a3698d28f579%2Ffe1f5900-958c-4772-93c0-c190dd784aed%2FScreenshot_2025-01-21_at_16.38.58.png?tableblock\u0026id15911b43-120a-8032-b99b-ce056625063a\u0026cachev2},page_icon:{type:page_icon,value:},excerpt:{type:text,value:Visualizing large 3D point cloud datasets can be a daunting task. With LumiDB, users store their data in a special purpose database that enables efficient querying based on point budget or density, eliminating the need for preprocessing. Beyond visualization, the stored points remain fully usable for other workflows. This post explores the challenges of visualizing massive point cloud datasets and how LumiDB helps.},related_posts:{type:relation,value:},do_not_index:{type:checkbox,value:false},last_edited_time:{type:last_edited_time,value:2025-01-22T11:36:00.010Z},extra_info:{type:multi_select,value:},ready_to_publish:{type:checkbox,value:true},hide_cta:{type:checkbox,value:false},hide_cover:{type:checkbox,value:false},meta_description:{type:text,value:Visualizing large 3D point cloud datasets can be a daunting task. With LumiDB, users store their data in a special purpose database that enables efficient querying based on point budget or density, eliminating the need for preprocessing. Beyond visualization, the stored points remain fully usable for other workflows. This post explores the challenges of visualizing massive point cloud datasets and how LumiDB helps.},meta_title:{type:text,value:Visualizing Massive 3D Point Clouds with Dynamic Level-of-Detail},hide_in_main_feed:{type:checkbox,value:false},featured:{type:checkbox,value:false},tags:{type:relation,value:},publish_date:{type:date,value:2025-01-22},authors:{type:relation,value:{related_id:12911b43-120a-8088-a4dc-f3badf2e8aa0,related_collection_id:0524a0b1-eb46-4cd8-8081-a3698d28f579}},slug:{type:text,value:Visualizing Massive 3D Point Clouds with Dynamic Level-of-Detail},name:{type:title,value:Visualizing Massive 3D Point Clouds with Dynamic Level-of-Detail}},id:15911b43-120a-8032-b99b-ce056625063a,title:Visualizing Massive 3D Point Clouds with Dynamic Level-of-Detail,extra_info:,slug:visualizing-massive-3d-point-clouds-with-dynamic-level-of-detail,derivedHref:/visualizing-massive-3d-point-clouds-with-dynamic-level-of-detail,page_icon:,canonical:,excerpt:Visualizing large 3D point cloud datasets can be a daunting task. With LumiDB, users store their data in a special purpose database that enables efficient querying based on point budget or density, eliminating the need for preprocessing. Beyond visualization, the stored points remain fully usable for other workflows. This post explores the challenges of visualizing massive point cloud datasets and how LumiDB helps.,tags:,related_posts:,authors:12911b43-120a-8088-a4dc-f3badf2e8aa0,publish_date:2025-01-22,ready_to_publish:true,cover:https://www.notion.so/image/https:%2F%2Fprod-files-secure.s3.us-west-2.amazonaws.com%2F0524a0b1-eb46-4cd8-8081-a3698d28f579%2Ffe1f5900-958c-4772-93c0-c190dd784aed%2FScreenshot_2025-01-21_at_16.38.58.png?tableblock\u0026id15911b43-120a-8032-b99b-ce056625063a\u0026cachev2,og_image:https://www.notion.so/image/https:%2F%2Fprod-files-secure.s3.us-west-2.amazonaws.com%2F0524a0b1-eb46-4cd8-8081-a3698d28f579%2Ffe1f5900-958c-4772-93c0-c190dd784aed%2FScreenshot_2025-01-21_at_16.38.58.png?tableblock\u0026id15911b43-120a-8032-b99b-ce056625063a\u0026cachev2,hide_cover:false,featured:false,hide_in_main_feed:false,last_edited_time:2025-01-22T11:36:00.010Z,fallback_cover:,do_not_index:false,meta_title:Visualizing Massive 3D Point Clouds with Dynamic Level-of-Detail,meta_description:Visualizing large 3D point cloud datasets can be a daunting task. With LumiDB, users store their data in a special purpose database that enables efficient querying based on point budget or density, eliminating the need for preprocessing. Beyond visualization, the stored points remain fully usable for other workflows. This post explores the challenges of visualizing massive point cloud datasets and how LumiDB helps.,hide_cta:false,original_canonical:},{notion_data:{id:{type:id,value:15911b43-120a-801a-89ed-e4af82757a35},page_cover:{type:page_cover,value:https://www.notion.so/image/https:%2F%2Fprod-files-secure.s3.us-west-2.amazonaws.com%2F0524a0b1-eb46-4cd8-8081-a3698d28f579%2Fe6bf67c3-b662-40ec-8092-1188414f7211%2Fjavascript_api.png?tableblock\u0026id15911b43-120a-801a-89ed-e4af82757a35\u0026cachev2},page_icon:{type:page_icon,value:},excerpt:{type:text,value:We’re releasing our minimal-yet-powerful runtime API. Whether you’re visualizing in Three.js or exporting data to 3rd party tools, LumiDB is built to make managing reality capture data easy and efficient.},related_posts:{type:relation,value:{related_id:18f11b43-120a-8026-825e-e11f1adafbb3,related_collection_id:0524a0b1-eb46-4cd8-8081-a3698d28f579},{related_id:1d111b43-120a-8055-946c-e52334f29366,related_collection_id:0524a0b1-eb46-4cd8-8081-a3698d28f579}},do_not_index:{type:checkbox,value:false},last_edited_time:{type:last_edited_time,value:2025-07-16T12:16:50.127Z},extra_info:{type:multi_select,value:},ready_to_publish:{type:checkbox,value:true},hide_cta:{type:checkbox,value:false},hide_cover:{type:checkbox,value:false},meta_description:{type:text,value:Discover LumiDB, a lightweight API designed to simplify managing reality capture data like 3D point clouds with powerful queries, metadata filtering, and dynamic resolution.},meta_title:{type:text,value:LumiDB: The Simplest Possible API for Reality Capture Data},hide_in_main_feed:{type:checkbox,value:false},featured:{type:checkbox,value:false},tags:{type:relation,value:{related_id:23211b43-120a-80bf-9e95-fe749f3dd92f,related_collection_id:0524a0b1-eb46-4cd8-8081-a3698d28f579}},publish_date:{type:date,value:2024-12-11},authors:{type:relation,value:{related_id:12911b43-120a-80f6-b20a-c56133b859a6,related_collection_id:0524a0b1-eb46-4cd8-8081-a3698d28f579}},slug:{type:text,value:lumidb the simplest possible api to query reality capture data},name:{type:title,value:LumiDB: The Simplest Possible API for Reality Capture Data}},id:15911b43-120a-801a-89ed-e4af82757a35,title:LumiDB: The Simplest Possible API for Reality Capture Data,extra_info:,slug:lumidb-the-simplest-possible-api-to-query-reality-capture-data,derivedHref:/lumidb-the-simplest-possible-api-to-query-reality-capture-data,page_icon:,canonical:,excerpt:We’re releasing our minimal-yet-powerful runtime API. Whether you’re visualizing in Three.js or exporting data to 3rd party tools, LumiDB is built to make managing reality capture data easy and efficient.,tags:23211b43-120a-80bf-9e95-fe749f3dd92f,related_posts:18f11b43-120a-8026-825e-e11f1adafbb3,1d111b43-120a-8055-946c-e52334f29366,authors:12911b43-120a-80f6-b20a-c56133b859a6,publish_date:2024-12-11,ready_to_publish:true,cover:https://www.notion.so/image/https:%2F%2Fprod-files-secure.s3.us-west-2.amazonaws.com%2F0524a0b1-eb46-4cd8-8081-a3698d28f579%2Fe6bf67c3-b662-40ec-8092-1188414f7211%2Fjavascript_api.png?tableblock\u0026id15911b43-120a-801a-89ed-e4af82757a35\u0026cachev2,og_image:https://www.notion.so/image/https:%2F%2Fprod-files-secure.s3.us-west-2.amazonaws.com%2F0524a0b1-eb46-4cd8-8081-a3698d28f579%2Fe6bf67c3-b662-40ec-8092-1188414f7211%2Fjavascript_api.png?tableblock\u0026id15911b43-120a-801a-89ed-e4af82757a35\u0026cachev2,hide_cover:false,featured:false,hide_in_main_feed:false,last_edited_time:2025-07-16T12:16:50.127Z,fallback_cover:,do_not_index:false,meta_title:LumiDB: The Simplest Possible API for Reality Capture Data,meta_description:Discover LumiDB, a lightweight API designed to simplify managing reality capture data like 3D point clouds with powerful queries, metadata filtering, and dynamic resolution.,hide_cta:false,original_canonical:},{notion_data:{id:{type:id,value:14a11b43-120a-8018-9997-d8b7ffb0f0c7},page_cover:{type:page_cover,value:https://www.notion.so/image/https:%2F%2Fprod-files-secure.s3.us-west-2.amazonaws.com%2F0524a0b1-eb46-4cd8-8081-a3698d28f579%2F46322808-d93a-4e69-b5c7-1a119120ec1b%2Fu3525751529_DSLR_image_from_a_construction_site_where_a_const_7efae00d-10c3-4ccf-808f-82010aa7f713_3.png?tableblock\u0026id14a11b43-120a-8018-9997-d8b7ffb0f0c7\u0026cachev2},page_icon:{type:page_icon,value:},excerpt:{type:text,value:Reality capture data is growing exponentially in the construction industry, yet the methods for managing it remain outdated and inefficient. At LumiDB, we’re building a solution to tackle this problem, paving the way for a future where construction sites are fully integrated and autonomous.},related_posts:{type:relation,value:},do_not_index:{type:checkbox,value:false},last_edited_time:{type:last_edited_time,value:2025-01-23T12:54:07.250Z},extra_info:{type:multi_select,value:},ready_to_publish:{type:checkbox,value:true},hide_cta:{type:checkbox,value:false},hide_cover:{type:checkbox,value:false},meta_description:{type:text,value:File Chaos: Why the Construction Industry Needs a New Approach to Managing Reality Capture Data},meta_title:{type:text,value:File Chaos: Why the Construction Industry Needs a New Approach to Managing Reality Capture Data},hide_in_main_feed:{type:checkbox,value:false},featured:{type:checkbox,value:false},tags:{type:relation,value:},publish_date:{type:date,value:2024-11-26},authors:{type:relation,value:{related_id:12911b43-120a-8088-a4dc-f3badf2e8aa0,related_collection_id:0524a0b1-eb46-4cd8-8081-a3698d28f579}},slug:{type:text,value:file chaos why the construction industry needs a new approach to managing reality capture data},name:{type:title,value:File Chaos: Why the Construction Industry Needs a New Approach to Managing Reality Capture Data}},id:14a11b43-120a-8018-9997-d8b7ffb0f0c7,title:File Chaos: Why the Construction Industry Needs a New Approach to Managing Reality Capture Data,extra_info:,slug:file-chaos-why-the-construction-industry-needs-a-new-approach-to-managing-reality-capture-data,derivedHref:/file-chaos-why-the-construction-industry-needs-a-new-approach-to-managing-reality-capture-data,page_icon:,canonical:,excerpt:Reality capture data is growing exponentially in the construction industry, yet the methods for managing it remain outdated and inefficient. At LumiDB, we’re building a solution to tackle this problem, paving the way for a future where construction sites are fully integrated and autonomous.,tags:,related_posts:,authors:12911b43-120a-8088-a4dc-f3badf2e8aa0,publish_date:2024-11-26,ready_to_publish:true,cover:https://www.notion.so/image/https:%2F%2Fprod-files-secure.s3.us-west-2.amazonaws.com%2F0524a0b1-eb46-4cd8-8081-a3698d28f579%2F46322808-d93a-4e69-b5c7-1a119120ec1b%2Fu3525751529_DSLR_image_from_a_construction_site_where_a_const_7efae00d-10c3-4ccf-808f-82010aa7f713_3.png?tableblock\u0026id14a11b43-120a-8018-9997-d8b7ffb0f0c7\u0026cachev2,og_image:https://www.notion.so/image/https:%2F%2Fprod-files-secure.s3.us-west-2.amazonaws.com%2F0524a0b1-eb46-4cd8-8081-a3698d28f579%2F46322808-d93a-4e69-b5c7-1a119120ec1b%2Fu3525751529_DSLR_image_from_a_construction_site_where_a_const_7efae00d-10c3-4ccf-808f-82010aa7f713_3.png?tableblock\u0026id14a11b43-120a-8018-9997-d8b7ffb0f0c7\u0026cachev2,hide_cover:false,featured:false,hide_in_main_feed:false,last_edited_time:2025-01-23T12:54:07.250Z,fallback_cover:,do_not_index:false,meta_title:File Chaos: Why the Construction Industry Needs a New Approach to Managing Reality Capture Data,meta_description:File Chaos: Why the Construction Industry Needs a New Approach to Managing Reality Capture Data,hide_cta:false,original_canonical:},{notion_data:{id:{type:id,value:12911b43-120a-800d-8ba0-d97ea68bbe1b},page_cover:{type:page_cover,value:https://www.notion.so/image/https:%2F%2Fwww.notion.so%2Fimages%2Fpage-cover%2Fnasa_new_york_city_grid.jpg?tableblock\u0026id12911b43-120a-800d-8ba0-d97ea68bbe1b\u0026cachev2},page_icon:{type:page_icon,value:},excerpt:{type:text,value:From hacking together data management software for autonomous robots at Amazon to starting LumiDB, this is the story of how we set out to fix reality capture data. Learn how we’re tackling the challenges of exploding data volumes, outdated tools, and scattered workflows to build a future where reality capture data is easily accessible.},related_posts:{type:relation,value:},do_not_index:{type:checkbox,value:false},last_edited_time:{type:last_edited_time,value:2024-11-26T08:20:13.585Z},extra_info:{type:multi_select,value:},ready_to_publish:{type:checkbox,value:true},hide_cta:{type:checkbox,value:false},hide_cover:{type:checkbox,value:false},meta_description:{type:text,value:Managing scanned 3D data? Why did we start a company to solve this problem?},meta_title:{type:text,value:Why we’re fixing reality capture data},hide_in_main_feed:{type:checkbox,value:false},featured:{type:checkbox,value:false},tags:{type:relation,value:{related_id:12911b43-120a-801b-889e-c4d8bcc91c6b,related_collection_id:0524a0b1-eb46-4cd8-8081-a3698d28f579}},publish_date:{type:date,value:2024-11-15},authors:{type:relation,value:{related_id:12911b43-120a-8088-a4dc-f3badf2e8aa0,related_collection_id:0524a0b1-eb46-4cd8-8081-a3698d28f579},{related_id:12911b43-120a-80f6-b20a-c56133b859a6,related_collection_id:0524a0b1-eb46-4cd8-8081-a3698d28f579}},slug:{type:text,value:why we’re fixing reality capture data},name:{type:title,value:Why We’re Fixing Reality Capture Data}},id:12911b43-120a-800d-8ba0-d97ea68bbe1b,title:Why We’re Fixing Reality Capture Data,extra_info:,slug:why-we-re-fixing-reality-capture-data,derivedHref:/why-we-re-fixing-reality-capture-data,page_icon:,canonical:,excerpt:From hacking together data management software for autonomous robots at Amazon to starting LumiDB, this is the story of how we set out to fix reality capture data. Learn how we’re tackling the challenges of exploding data volumes, outdated tools, and scattered workflows to build a future where reality capture data is easily accessible.,tags:12911b43-120a-801b-889e-c4d8bcc91c6b,related_posts:,authors:12911b43-120a-8088-a4dc-f3badf2e8aa0,12911b43-120a-80f6-b20a-c56133b859a6,publish_date:2024-11-15,ready_to_publish:true,cover:https://www.notion.so/image/https:%2F%2Fwww.notion.so%2Fimages%2Fpage-cover%2Fnasa_new_york_city_grid.jpg?tableblock\u0026id12911b43-120a-800d-8ba0-d97ea68bbe1b\u0026cachev2,og_image:https://www.notion.so/image/https:%2F%2Fwww.notion.so%2Fimages%2Fpage-cover%2Fnasa_new_york_city_grid.jpg?tableblock\u0026id12911b43-120a-800d-8ba0-d97ea68bbe1b\u0026cachev2,hide_cover:false,featured:false,hide_in_main_feed:false,last_edited_time:2024-11-26T08:20:13.585Z,fallback_cover:,do_not_index:false,meta_title:Why we’re fixing reality capture data,meta_description:Managing scanned 3D data? Why did we start a company to solve this problem?,hide_cta:false,original_canonical:},pages:{notion_data:{id:{type:id,value:12911b43-120a-811d-ad3a-da81e2ee0bfe},page_cover:{type:page_cover,value:},page_icon:{type:page_icon,value:},do_not_index:{type:checkbox,value:false},slug:{type:text,value:contact},hide_cover:{type:checkbox,value:false},meta_title:{type:text,value:},meta_description:{type:text,value:},hide_cta:{type:checkbox,value:false},last_edited_time:{type:last_edited_time,value:2024-10-24T07:46:41.095Z},publish:{type:checkbox,value:true},excerpt:{type:text,value:},name:{type:title,value:Contact}},id:12911b43-120a-811d-ad3a-da81e2ee0bfe,title:Contact,slug:contact,derivedHref:/contact,excerpt:,cover:,og_image:,canonical:,publish:true,hide_cover:false,publish_date:2025-11-26T14:35:45.310Z,last_edited_time:2024-10-24T07:46:41.095Z,fallback_cover:,do_not_index:false,meta_title:Contact,meta_description:,hide_cta:false,original_canonical:},{notion_data:{id:{type:id,value:12911b43-120a-8159-af44-e25a14f83c9a},page_cover:{type:page_cover,value:https://www.notion.so/image/https:%2F%2Fwww.notion.so%2Fimages%2Fpage-cover%2Fsolid_red.png?tableblock\u0026id12911b43-120a-8159-af44-e25a14f83c9a\u0026cachev2},page_icon:{type:page_icon,value:},do_not_index:{type:checkbox,value:false},slug:{type:text,value:about-me},hide_cover:{type:checkbox,value:false},meta_title:{type:text,value:},meta_description:{type:text,value:},hide_cta:{type:checkbox,value:false},last_edited_time:{type:last_edited_time,value:2024-10-24T07:46:41.095Z},publish:{type:checkbox,value:true},excerpt:{type:text,value:},name:{type:title,value:About Me}},id:12911b43-120a-8159-af44-e25a14f83c9a,title:About Me,slug:about-me,derivedHref:/about-me,excerpt:,cover:https://www.notion.so/image/https:%2F%2Fwww.notion.so%2Fimages%2Fpage-cover%2Fsolid_red.png?tableblock\u0026id12911b43-120a-8159-af44-e25a14f83c9a\u0026cachev2,og_image:https://www.notion.so/image/https:%2F%2Fwww.notion.so%2Fimages%2Fpage-cover%2Fsolid_red.png?tableblock\u0026id12911b43-120a-8159-af44-e25a14f83c9a\u0026cachev2,canonical:,publish:true,hide_cover:false,publish_date:2025-11-26T14:35:45.310Z,last_edited_time:2024-10-24T07:46:41.095Z,fallback_cover:,do_not_index:false,meta_title:About Me,meta_description:,hide_cta:false,original_canonical:},{notion_data:{id:{type:id,value:12911b43-120a-81eb-b5be-fd0b95884f33},page_cover:{type:page_cover,value:},page_icon:{type:page_icon,value:},do_not_index:{type:checkbox,value:false},slug:{type:text,value:services},hide_cover:{type:checkbox,value:false},meta_title:{type:text,value:},meta_description:{type:text,value:},hide_cta:{type:checkbox,value:false},last_edited_time:{type:last_edited_time,value:2024-10-24T07:46:41.095Z},publish:{type:checkbox,value:true},excerpt:{type:text,value:},name:{type:title,value:Services}},id:12911b43-120a-81eb-b5be-fd0b95884f33,title:Services,slug:services,derivedHref:/services,excerpt:,cover:,og_image:,canonical:,publish:true,hide_cover:false,publish_date:2025-11-26T14:35:45.310Z,last_edited_time:2024-10-24T07:46:41.095Z,fallback_cover:,do_not_index:false,meta_title:Services,meta_description:,hide_cta:false,original_canonical:},tags:,authors:{notion_data:{id:{type:id,value:12911b43-120a-8088-a4dc-f3badf2e8aa0},page_cover:{type:page_cover,value:},page_icon:{type:page_icon,value:https://www.notion.so/image/https:%2F%2Fprod-files-secure.s3.us-west-2.amazonaws.com%2F0524a0b1-eb46-4cd8-8081-a3698d28f579%2Fd026f54c-5f96-45a5-a4f8-b4b95d1d278d%2FVYLE9ePguub4Ia5QtLSBdimIFXw.avif?tableblock\u0026id12911b43-120a-8088-a4dc-f3badf2e8aa0\u0026cachev2},facebook:{type:url,value:},last_edited_time:{type:last_edited_time,value:2024-11-15T07:27:34.732Z},mastodon:{type:url,value:},meta_title:{type:text,value:},telegram:{type:url,value:},youtube:{type:url,value:},instagram:{type:url,value:},hide_cta:{type:checkbox,value:false},do_not_index:{type:checkbox,value:false},discord:{type:url,value:},linkedin:{type:url,value:},tiktok:{type:url,value:},slug:{type:text,value:sampo},twitter:{type:url,value:},meta_description:{type:text,value:},content:{type:relation,value:{related_id:12911b43-120a-800d-8ba0-d97ea68bbe1b,related_collection_id:0524a0b1-eb46-4cd8-8081-a3698d28f579},{related_id:14a11b43-120a-8018-9997-d8b7ffb0f0c7,related_collection_id:0524a0b1-eb46-4cd8-8081-a3698d28f579},{related_id:15911b43-120a-8032-b99b-ce056625063a,related_collection_id:0524a0b1-eb46-4cd8-8081-a3698d28f579},{related_id:1af11b43-120a-8069-b74a-e7ab974b3d89,related_collection_id:0524a0b1-eb46-4cd8-8081-a3698d28f579},{related_id:20f11b43-120a-80b9-9a2e-d6b089264395,related_collection_id:0524a0b1-eb46-4cd8-8081-a3698d28f579},{related_id:23211b43-120a-80f5-bf3c-cf38e3b8d9d5,related_collection_id:0524a0b1-eb46-4cd8-8081-a3698d28f579},{related_id:2ae11b43-120a-8084-81d0-ebcf041cc1c8,related_collection_id:0524a0b1-eb46-4cd8-8081-a3698d28f579},{related_id:2b611b43-120a-803a-9692-cb910f07e83c,related_collection_id:0524a0b1-eb46-4cd8-8081-a3698d28f579}},publish:{type:checkbox,value:true},description:{type:text,value:CEO, Co-founder},pinterest:{type:url,value:},name:{type:title,value:Sampo Lappalainen}},id:12911b43-120a-8088-a4dc-f3badf2e8aa0,title:Sampo Lappalainen,slug:sampo,derivedHref:/sampo,canonical:,description:CEO, Co-founder,photo:https://www.notion.so/image/https:%2F%2Fprod-files-secure.s3.us-west-2.amazonaws.com%2F0524a0b1-eb46-4cd8-8081-a3698d28f579%2Fd026f54c-5f96-45a5-a4f8-b4b95d1d278d%2FVYLE9ePguub4Ia5QtLSBdimIFXw.avif?tableblock\u0026id12911b43-120a-8088-a4dc-f3badf2e8aa0\u0026cachev2,cover:,og_image:,last_edited_time:2024-11-15T07:27:34.732Z,publish:true,twitter:,linkedin:,instagram:,facebook:,youtube:,github:,pinterest:,tiktok:,telegram:,mastodon:,discord:,threads:,bluesky:,fallback_cover:,do_not_index:false,meta_title:Sampo Lappalainen,meta_description:CEO, Co-founder,hide_cta:false,original_canonical:},{notion_data:{id:{type:id,value:12911b43-120a-80f6-b20a-c56133b859a6},page_cover:{type:page_cover,value:},page_icon:{type:page_icon,value:https://www.notion.so/image/https:%2F%2Fprod-files-secure.s3.us-west-2.amazonaws.com%2F0524a0b1-eb46-4cd8-8081-a3698d28f579%2F72c5ae9d-33d7-40e7-ae91-451a0f9095dc%2FvhHrb4Ui0L1aO5U9K6uortkPA.avif?tableblock\u0026id12911b43-120a-80f6-b20a-c56133b859a6\u0026cachev2},facebook:{type:url,value:},last_edited_time:{type:last_edited_time,value:2024-11-15T07:26:37.493Z},mastodon:{type:url,value:},meta_title:{type:text,value:},telegram:{type:url,value:},youtube:{type:url,value:},instagram:{type:url,value:},hide_cta:{type:checkbox,value:false},do_not_index:{type:checkbox,value:false},discord:{type:url,value:},linkedin:{type:url,value:},tiktok:{type:url,value:},slug:{type:text,value:jasin},twitter:{type:url,value:},meta_description:{type:text,value:},content:{type:relation,value:{related_id:12911b43-120a-800d-8ba0-d97ea68bbe1b,related_collection_id:0524a0b1-eb46-4cd8-8081-a3698d28f579},{related_id:15911b43-120a-801a-89ed-e4af82757a35,related_collection_id:0524a0b1-eb46-4cd8-8081-a3698d28f579},{related_id:18f11b43-120a-8026-825e-e11f1adafbb3,related_collection_id:0524a0b1-eb46-4cd8-8081-a3698d28f579},{related_id:1d111b43-120a-8055-946c-e52334f29366,related_collection_id:0524a0b1-eb46-4cd8-8081-a3698d28f579},{related_id:20d11b43-120a-8095-a005-f10da002882f,related_collection_id:0524a0b1-eb46-4cd8-8081-a3698d28f579},{related_id:21f11b43-120a-8089-8d35-d1a15a3f3126,related_collection_id:0524a0b1-eb46-4cd8-8081-a3698d28f579},{related_id:2b711b43-120a-80c5-b67f-fb73ba0918d0,related_collection_id:0524a0b1-eb46-4cd8-8081-a3698d28f579}},publish:{type:checkbox,value:true},description:{type:text,value:CTO, Co-founder},pinterest:{type:url,value:},name:{type:title,value:Jasin Bushnaief}},id:12911b43-120a-80f6-b20a-c56133b859a6,title:Jasin Bushnaief,slug:jasin,derivedHref:/jasin,canonical:,description:CTO, Co-founder,photo:https://www.notion.so/image/https:%2F%2Fprod-files-secure.s3.us-west-2.amazonaws.com%2F0524a0b1-eb46-4cd8-8081-a3698d28f579%2F72c5ae9d-33d7-40e7-ae91-451a0f9095dc%2FvhHrb4Ui0L1aO5U9K6uortkPA.avif?tableblock\u0026id12911b43-120a-80f6-b20a-c56133b859a6\u0026cachev2,cover:,og_image:,last_edited_time:2024-11-15T07:26:37.493Z,publish:true,twitter:,linkedin:,instagram:,facebook:,youtube:,github:,pinterest:,tiktok:,telegram:,mastodon:,discord:,threads:,bluesky:,fallback_cover:,do_not_index:false,meta_title:Jasin Bushnaief,meta_description:CTO, Co-founder,hide_cta:false,original_canonical:},{notion_data:{id:{type:id,value:19611b43-120a-808a-8e30-cece5dfadd90},page_cover:{type:page_cover,value:},page_icon:{type:page_icon,value:https://www.notion.so/image/attachment:6151120e-8afd-4ac2-9541-a3f9e0f57f8f:35SDFsFtLHsl0DwaetyJDzOMAk.png?tableblock\u0026id19611b43-120a-808a-8e30-cece5dfadd90\u0026cachev2},facebook:{type:url,value:},last_edited_time:{type:last_edited_time,value:2025-02-10T12:34:31.981Z},mastodon:{type:url,value:},meta_title:{type:text,value:},telegram:{type:url,value:},youtube:{type:url,value:},instagram:{type:url,value:},hide_cta:{type:checkbox,value:false},do_not_index:{type:checkbox,value:false},discord:{type:url,value:},linkedin:{type:url,value:},tiktok:{type:url,value:},slug:{type:text,value:alex},twitter:{type:url,value:},meta_description:{type:text,value:},content:{type:relation,value:{related_id:19611b43-120a-8027-aa48-daf4f8b36e4c,related_collection_id:0524a0b1-eb46-4cd8-8081-a3698d28f579},{related_id:23111b43-120a-8015-9c55-d303281bfb3c,related_collection_id:0524a0b1-eb46-4cd8-8081-a3698d28f579}},publish:{type:checkbox,value:true},description:{type:text,value:Lead Developer},pinterest:{type:url,value:},name:{type:title,value:Alex Lagerstedt}},id:19611b43-120a-808a-8e30-cece5dfadd90,title:Alex Lagerstedt,slug:alex,derivedHref:/alex,canonical:,description:Lead Developer,photo:https://www.notion.so/image/attachment:6151120e-8afd-4ac2-9541-a3f9e0f57f8f:35SDFsFtLHsl0DwaetyJDzOMAk.png?tableblock\u0026id19611b43-120a-808a-8e30-cece5dfadd90\u0026cachev2,cover:,og_image:,last_edited_time:2025-02-10T12:34:31.981Z,publish:true,twitter:,linkedin:,instagram:,facebook:,youtube:,github:,pinterest:,tiktok:,telegram:,mastodon:,discord:,threads:,bluesky:,fallback_cover:,do_not_index:false,meta_title:Alex Lagerstedt,meta_description:Lead Developer,hide_cta:false,original_canonical:},routeType:ALL_ARTICLES_PAGE,heroPageRecordMap:null,isFullPageHero:false,canonical:https://blog.lumidb.com,og_image:,currentPage:{title:LumiDB blog,excerpt:We publish case studies, product updates, and technical guidance on handling large-scale 3D data. Our goal is to show how organizations use LumiDB to simplify point-cloud workflows, improve performance, and modernize their spatial data infrastructure.,cover:https://imagedelivery.net/gLgcD68SxSCB7eEUDDEJXQ/80c96c1b294735fc2fd66882838b30ac_8232cc0a-1f06-4889-a2b2-a590b67d2983/public,meta_title:LumiDB blog,meta_description:We publish case studies, product updates, and technical guidance on handling large-scale 3D data. Our goal is to show how organizations use LumiDB to simplify point-cloud workflows, improve performance, and modernize their spatial data infrastructure.,og_image:https://imagedelivery.net/gLgcD68SxSCB7eEUDDEJXQ/80c96c1b294735fc2fd66882838b30ac_8232cc0a-1f06-4889-a2b2-a590b67d2983/public},hide_cta:false}},actionData:null,errors:null},future:{unstable_cssModules:false,unstable_cssSideEffectImports:false,unstable_dev:false,unstable_postcss:true,unstable_tailwind:false,unstable_vanillaExtract:false,v2_errorBoundary:false,v2_meta:false,v2_routeConvention:false}};/script>script typemodule async>import /_feather/build/manifest-FDC8B347.js;import * as route0 from /_feather/build/root-JDE3HOBT.js;import * as route1 from /_feather/build/routes/index-CC52OPRR.js;window.__remixRouteModules {root:route0,routes/index:route1};import(/_feather/build/entry.client-UPNL6UIM.js);/script>script async data-website-id96fe9439-2ee8-41f1-9bb2-943bba4b2954 srchttps://stats.feather.so/script.js>/script>div>/div>/body>/html>
View on OTX
|
View on ThreatMiner
Please enable JavaScript to view the
comments powered by Disqus.
Data with thanks to
AlienVault OTX
,
VirusTotal
,
Malwr
and
others
. [
Sitemap
]